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� Under mild conditions on the survival function of the random variable X

Pr

{
X − u
σu

> x
∣∣∣ X > u

}
−→ {1 + ξx}−1/ξ , u→ x∗

i.e. the scaled excess random variable converges in distribution to the generalised Pareto

distribution (Davison & Smith 1990)

� Interest often is in estimating either vp given p, or p given vp, where p and vp satisfy

P(X > vp) = p,
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Extrapolation is dangerous. EVT provides a principled approach through asymptotically
motivated extrapolation factors. For statistical purposes such asymptotic assumptions are
taken to hold exactly over tail regions

P (X > vp) = P (X > vp | X > u)P(X > u) vp > u

For example, fixing p and inverting expression leads to a closed form expression for the 1/p
return level

vp = u+
σu
ξ

[(
π

p

)ξ

− 1

]
,

where π = P(X > u).
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� In a multivariate setting, we need to characterize the dependence between random
variables

� Standard practical approach is to bring marginal distributions to a common scale.

1 1

1
1

Gaussian

1

exponential Laplace

1

1

uniform

� We shall adopt this approach assuming that such standardizations are possible in practice

� this means that we can estimate the marginal distributions to a good degree
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� Similarly here, we are interested in risk functionals. In particular, in estimating the
probability of a subset of variables of X hitting an extreme set

P(X ∈ Rv) = P(X ∈ Rv |X ∈ Lu)P(X ∈ Lu), (1)

For example, X = (X1, . . . , Xd) could refer to a segment from a stationary time series of
daily maximum temperatures. Then the risk functional would correspond to the probability of
observing d days in a row where the daily max exceeds a high level v.
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� Consider the measure of extremal dependence

χ = lim
u→∞

P(X2 > u | X1 > u)

– χ > 0: random variables are called asymptotically dependent
– χ = 0: random variables are called asymptotically independent

� Interpretation

Λ(u) =
P(max{X1, X2} > u)

P(X1 > u)
→ (2− χ) as u→∞.



Extremal dependence in time series

Introduction

Threshold exceedances

Univariate exceedances

Extrapolation

Reduction to common margins

Multivariate setting

Asymptotic dependence

� Extremal dependence in time series
Asymptotic dependence vs asymptotic
dependence in time series

Orleans daily maximum temperatures

Examples of functionals of interest

Conditional extremes of time series

Rare event sampling

9 / 36

� When analysing the extremal behaviour of a stationary time series {Xt : t = 0,±1,±2}
one has to distinguish between two classes of extremal dependence.

� Assuming the time series has standard Laplace margins the lag t coefficient of asymptotic
dependence is

χt = lim
u→∞

P(Xt > u |X0 > u) (2)

� If there exists a t �= 0 such that χt > 0 then the process is said to be asymptotically
dependent and asymptotically independent otherwise.
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1 1

AI process

1 1

AD process

Figure 1: Simulated paths from a Gaussian autoregressive process (left) and a time series lo-
gistic process (right), conditioned on a high level relative to their marginal distribution.
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daily max in Laplace scale

X

1 1

Extreme episodes

Figure 2: Left: daily maximum temperature measurements (shown in standard Laplace scale) from Orleans,
France, taken during the years 1946-2012 (summer months). Right: Evolution of two events after witnessing a
daily maximum temperature exceeding the 0.999 empirical quantile.
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e1(v, d) = E(maxX1:d | X1 > v),

e2(v, d) = E(d−1
d∑

i=1

Xi | X1 > v)

e3(v, d) = E

( d∑
i=1

�[Xi > v]
∣∣∣ X1 > v

)

p(v, d, r) = P

( d∑
i=1

�[Xi > v] = r
∣∣∣ X1 > v

)
,

See also Winter & Tawn (2016a,b)
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� {Xt}t∈T stationary process with exponentially tailed margins:
– limx→∞ Pr(Xt > x)/e−x = 1
– limx→−∞ Pr(Xt ≤ x)/ex = 1

� Assume there exist location and scale functions ai : R→ R and bi : R→ R+, such that
for any A ⊂ T with |A| <∞ (Heffernan & Tawn 2004)(

Xt − u,
XA − aA−t(Xt)

bA−t(Xt)

) ∣∣∣ Xt > u
d−→ (Et,Z

t
A), (3)

where Et ⊥⊥ Zt
A, Et ∼ exp(1) and Zt

A\t ∼ GA\t whereGA\t has non-degenerate margins.

– In this talk T is taken to be Z = {0,±1,±2, . . . }. Other choices such as R work too
with straightforward adaptations. A− t stands for {i− t : i ∈ A}. XA stands for
(Xi : i ∈ A).

– The statistical method that is presented is inspired by Wadsworth & Tawn (2019) who
treat the case T = R

2.

– It is assumed that a0(x) = x and b0(x) = 1. This implies that Zt
t = 0.
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� Assume that Xt ∼ FL where FL denotes the standard Laplace distribution.

� Let Tu = {t ∈ T : Xt > u} denote the set of times where the process exceeds the level u.

� For statistical purposes, the limit relation (3) is taken to hold exactly above a sufficiently
large level u. That is, we assume that for t ∈ Tu

Xt = u+ Et

Xt−k : t+k = a−k : k(Xt) + b−k : k(Xt)Z
t
t−k : t+k,



Considerations for statistical modelling

Introduction

Conditional extremes of time series

Conditional extreme value limits

Statistical model

�
Considerations for statistical
modelling

Statistical model for the residual vector
Extended regularly varying norming
functions–structure in decay

Models for norming functions

Simplified forms for norming functions

Composite likelihood

Monte Carlo study

Monte Carlo study

Additional parameterizations

Rare event sampling

16 / 36

� k ∈ N chosen sufficiently large so that extreme episodes are contained within
t− k : t+ k. Too large a k leads to increased computational burder. Context can often
dictate choice of k.

� Multivariate distribution G−k : k admits no finite-dimensional parametric form. Require a
flexible statistical model for G−k : k that facilitates inference and simulation (later).

� Asymptotic independence implies a|i|(x)→ 0 and b|i|(x)→ 1 as i→∞. So for large |i|
we have that Zt

t+i ∼ FL.

� In addition to G−k : k, there are 2× (2k − 1) functions to infer (a−k : k and b−k : k).
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� Statistical model for probability density function of Zt
t+i

fi(z) =
δi

2σiΓ(1/δi)
exp
{
−
∣∣∣∣z − µiσi

∣∣∣∣
δi }

, µi ∈ R, σi > 0, δi > 0. (4)

– (µi, σi, δi) = (0, 1, 2): standard Gaussian

– (µi, σi, δi) = (0, 1, 1): standard Laplace

� In what follows we write Bt
k for the set {t− k : t+ k} \ {t}.

� A versatile statistical model for Zt
Bt

k
is

Φ−1
{
FBt

k

(
Zt

Bt
k

)}
∼ MVN

(
0,Q−1

)
where Q = (Σ−1)−(k+1),−(k+1) with Σ ∈ R

2k+1,2k+1.

� Possibility for other modelling choices too, see Wadsworth & Tawn (2019).
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� Wadsworth et al. (2016) show that, under the assumption of a joint density for XA, an
equivalent formulation of the limit relation (3) for A = Bt

k can be given

lim
u→∞

Pr

(
XBt

k
− aBt

k
(u)

bBt
k
(u)

≤ z
∣∣∣ Xt = u

)
= GBt

k
(z)

� Restrict this further by assuming that for any x ∈ R

lim
u→∞

Pr

(
XBt

k
− aBt

k
(u)

bBt
k
(u)

≤ z
∣∣∣ Xt = u+ x

)
= GBt

k
(z; x)

with GBt
k
(z; x) a family of multivariate distributions with non-degenerate margins,

satisfying GBt
k
(z; 0) = GBt

k
(z).

� Under the foregoing assumption, we have that (ai, bi) are necessarily extended regularly
varying (Resnick & Zeber 2014, de Haan & Ferreira 2006), that is

lim
u→∞

ai(u+ x)− ai(u)
bi(u)

= ψa
i (x) and lim

u→∞

bi(u+ x)

bi(u)
= ψb

i (x)
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� In order to make statistical inference tractable, we are required to specify the forms of the
norming functions aA and bA .

� We consider two possibilities

Model 1: ai(x) = αix, bi(x) = xβi, (5)
Model 2: ai(x) = αix, bi(x) = {1 + ai(x)}β, (6)

where αi ∈ [−1, 1], βi ∈ [0, 1], for i = 1, . . . , k.

� Many results available for structured processes such as pth order Markov process
(Papastathopoulos et al. 2017, Papastathopoulos & Tawn 2020)
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Recurrence based approach. For example, for a pth order Markov process, α1 : p−1 are free
parameters and subsequent values αp : k obtained via αt = a(αt−p : t−1)

� recurrence based on structure from autoregressive processes

αt = θ1αt−1 + θ2αt−2, 2 ≤ t ≤ k, with α0 = 1, α1 = θ1/(1− θ2). (7)

� recurrence based on structure from homogeneous update functions

αt = c

[ p∑
i=1

γi(γiαt−i)
δ

]1/δ
, d ≤ t ≤ k, (8)

with c > 0, δ ∈ R, γ1 : p ∈ Sp−1 = {γ1 : p ∈ R
p
+ :
∑p

i=1 γi = 1}.

� More possibilities for modelling including general autocorrelation functions. Structure
backwards in time obtained similarly.

� Remark: Laplace scale also allows modelling negative dependence and (predictable)
jumps from lower to upper tail. Oscillating autocorrelation functions can be used too.
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� If πt
−k : k(x) denotes the conditional density of Xt−k : t+k given Xt = u, then given an

observed time series x = (x1, . . . , xn)

logπt
−k : k(x) =

k∑
i=−k

{
log δi − log bi(xt)− log σi − logΓ (1/δi)−

∣∣ztt+i

∣∣δi }

+0.5 log |Q| − 0.5wTQw + 0.5
k∑

i=−k

[
Φ−1{Ft+i(xt+i)}

]2 (9)

where ztt+i = {xt+i − ai(xt)− bi(xt)µi}/{bi(xt)σi}

� w = (Φ−1{F t
t+1(xt+1)}, . . . ,Φ−1{F t

t+k(xt+k)}) with F t
t+i

� the conditional distribution function of Xt+i given Xt = u. The composite likelihood is
given by ∑

t∈Tu

log πt
−k : k(x)
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� Depends on the underlying data generating mechanism and exploratory analysis is useful
here

� For the examples in the Monte Carlo study (and the Orleans dataset), possible
parameterization under the Model 2 normings is

µi+1 = Ae−Bi,

σi+1 = (1− Ce−Di), (10)
δi+1 = 1 + Ee−Fi,

for A,B,C,D,E, F > 0 and i ≥ 0.
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� Interested in estimating conditionals expectations of the form

E(g(X1:d) | X1 > v) v > u, d ∈ N,

for some function g.

� Repeatedly simulate forward from extreme event and estimate expectation using sample
proportion
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input : Threshold v > u, d,N ∈ N and constants (α̂1 : k, β̂) from fitted conditional model.
output
:

An estimate of E(g(X1 : d) | X1 > v)

1 for i← 1 to N do
2 simulate exceedance amount E ∼ Exp(1) ;
3 set X i

1 = v + E ;
4 simulate residual Ẑ(1)

2 : d from fitted conditional model independently of X i
1 ;

5 set X i
2 : d = α̂1 : d−1X

i
1 + (X i

1)
β̂Ẑ

(1)
2 : d ;

6 set X i = (X1,X
i
2 : d) ;

7 end
8 return Ê(g(X1 : d) | X1 > v) = N−1

∑N
i=1 g(X

i)
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Figure 3: Plots showing parameter estimates for different thresholds used to identify ex-
ceedances.
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� a period of three consecutive days where the mean daily maximum temperature exceeds
35°C may lead to excess mortality in Orleans between 17% and 47%.

� We estimated the probability of this event occurring during a three week period
conditional on 35°C being exceeded at the start of the period. The probability is estimated
as 0.309 with 95% bootstrap confidence interval (0.114, 0.420).

� Other simple summary statistics can be calculated similarly with forward sampling. For
example, E{max(Y1 : 21|Y1 > 35)} is estimated as 36.76°C (36.07, 37.35)
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� Interested in estimating probabilities of the form

p = P(∪di=1{Xi > vi}) = Eπ [�L(X1 : d)] vi ∈ (0,∞)

� where L = ∪di=1Li with Li = {x ∈ R
d : xi > vi}.

� The obvious empirical estimator

N−1
N∑
i=1

�L(X
i),

of p based on N independent replications, {X i}Ni=1, of X1 : d, is unbiased and has variance
p(1− p)/N .

� For each i ∈ 1 : d, define π∗i to be the conditional density of X1 : d given Xi > vi, so that

π∗i (x) = π(x)�Li
(x)/pi, x ∈ R

d,

where pi = P(Xi > vi)
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� Importance sampling density (Karp & Luby 1983, Heffernan & Tawn 2004, Adler et al.
2012, Owen et al. 2019, Wadsworth & Tawn 2019)

π∗ =
d∑

i=1

wiπ
∗
i

where wi = pi/p̄ and p̄ =
∑d

i=1 pi is the union bound of p.

� Thus the mixture component π∗i is sampled from with probability proportional to pi. Since

p = Eπ{�L(X1 : d)} = Eπ∗

{
�L(X1 : d)π(X1 : d)

π∗(X1 : d)

}
, (11)

this motivates the following estimator of p

p̂ =
1

N

N∑
i=1

�L(X
i)π(X i)

π∗(X i)
=

1

n

n∑
i=1

�L(X
i)π(X i)∑d

j=1 �Lj
(X i)π(X i)p̄−1

, X i iid∼ π∗. (12)
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� As �L(X i) = 1 when X i ∼ π∗, estimator (12) simplifies to

p̂ =
p̄

n

n∑
i=1

1

S(X i)
, X i iid∼ π∗, (13)

where S(X i) =
∑d

j=1 �Lj
(X i) counts the number of events {Xi > vi}, 1 < i < d, that

occur in the block X i of length d.

� As 1 ≤ S(X i) ≤ d when X i ∼ π∗, p̂ is always well defined and respects the theoretical
bounds p̄/d ≤ p ≤ p̄.

� The union bound p̄ which appears in expression (13) is easily obtained using the
assumption that the margins of the process are standard Laplace distributed.
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� Owen et al. (2019) prove that p̂ is an unbiased estimator of p and Var(p̂) ≤ p(p̄− p)/n,
from which it follows that p̂ is a consistent estimator of p.

� Although p̂ may be used to estimate the probability of an arbitrary union of events, it is in
the rare event setting, when p and p̄ are small, that it is most efficient since then p(p̄− p)
may be orders of magnitude smaller than p(1− p).

� Thus, in the rare event setting we increase the precision in estimation using importance
sampling from π∗ rather than π.



References

Introduction

Conditional extremes of time series

Rare event sampling

Forward sampling

Forward sampling algorithm
Orleans dataset: stability plots for
parameter estimates
Orleans dataset: expected evolution of
extreme episode

Orleans dataset: summary statistics

Estimating the union of rare events

Importance sampling density

Sampling importance resampling

� References

36 / 36

Adler, R. J., Blanchet, J. H. & Liu, J. (2012), ‘Efficient Monte Carlo for high excursions of Gaussian random fields’, Ann. Appl. Probab. 22(3), 1167–1214.

Davison, A. C. & Smith, R. L. (1990), ‘Models for exceedances over high thresholds’, J. Roy. Statist. Soc., B 52, 393–442.

de Haan, L. & Ferreira, A. (2006), Extreme Value Theory: An Introduction, Vol. 21, Springer, New York.

Heffernan, J. E. & Tawn, J. A. (2004), ‘A conditional approach for multivariate extreme values (with discussion)’, J. R. Stat. Soc. Ser. B. Stat. Methodol. 66, 1–34.

Karp, R. M. & Luby, M. (1983), Monte-Carlo algorithms for enumeration and reliability problems, in ‘24th Annual Symposium on Foundations of Computer Science’, IEEE, pp. 56–64.

Owen, A. B., Maximov, Y. & Chertkov, M. (2019), ‘Importance sampling the union of rare events with an application to power systems analysis.’, Electron. J. Statist. 13, 231–254.

Papastathopoulos, I., Strokorb, K., Tawn, J. A. & Butler, A. (2017), ‘Extreme events of Markov chains’, Advances in Applied Probability 49.

Papastathopoulos, I. & Tawn (2020), ‘Hidden tail chains and recurrence equations for dependence parameters associated with extremes of higher-order Markov chains’, arXiv preprint arXiv:1903.04059 .

Resnick, S. I. & Zeber, D. (2014), ‘Transition kernels and the conditional extreme value model’, Extremes 17, 263–287.

Wadsworth, J. L. & Tawn, J. (2019), ‘Higher-dimensional spatial extremes via single-site conditioning’, arXiv:1912.06560 .

Wadsworth, J. L., Tawn, J. A., Davison, A. C. & Elton, D. M. (2016), ‘Modelling across extremal dependence classes’, J. Roy. Statist. Soc. Ser. B, Statist. Methodol. . doi: 10.1111/rssb.12157.

Winter, H. C. & Tawn, J. A. (2016a), ‘kth-order markov extremal models for assessing heatwave risks’, Extremes pp. 1–23.

Winter, H. C. & Tawn, J. A. (2016b), ‘Modelling heatwaves in central France: a case-study in extremal dependence’, J. R. Stat. Soc. Ser. C. Appl. Stat. 65, 345–365.


