TD DE COMPLÉMENTS DE PROBABILITÉS POUR L'ASSURANCE ISUP, 2013-2014

Feuille d'exercices n° 1 Théorie de la ruine

Exercice 1.

Soit (N, λ) un couple de variables aléatoires avec $N|\lambda = l \sim \mathcal{P}(l)$ et $\lambda \sim \Gamma(r, s)$.

1. Montrer que N suit une lois binomiale négative de paramètres n et p, c.-à-d.

$$\mathbb{P}(N=k) = \frac{\Gamma(k+n)}{\Gamma(n)k!} p^n (1-p)^k,$$

où l'on exprimera p et n en fonction de r et s.

- 2. En déduire l'espérance et la variance d'une loi binomiale négative.
- 3. Dans le tableau ci-dessous sont réportés les nombres i.i.d. de sinistres par périodes. Ajuster une loi de Poisson puis une loi binomiale négative. Laquelle vous semble plus adaptée?

Periode	1	2	3	4	5	6	7	8	9	10
Nombre	4	8	6	3	2	9	13	10	7	10

Exercice 2.

Soit $S(t) = X_1 + \ldots + X_{N(t)}$ le coût globale de sinistres survenus entre une date 0 et une date t. On suppose que $(X_i)_{i\geq 0}$ est une suite de v.a. i.i.d. de fonction caractéristique ϕ_X . Calculer la fonction caractéristique de S(t):

- 1. dans le cas où N(t) est un processus de Poisson homogène,
- 2. dans le cas où N(t) suit une loi binomiale négative.

Exercice 3.

Rappeler l'équation qui permet d'obtenir la valeur de coefficient d'ajustement R.

- 1. Calculer R dans le cas où $X \sim \mathcal{E}(\lambda)$.
- 2. Que se passe-t-il si X suit une loi de Pareto de paramètres (α, λ) ?

Exercice 4.

On souhaite obtenir un coefficient d'ajustement $R = R_0$ afin de s'assurer que le niveau de risque de ruine est contrôlé. On modélise le nombre de sinistres par la loi de Poisson $\mathcal{P}(\beta)$ et le coût de sinistre par la loi exponentielle $\mathcal{E}(\lambda)$. Quel est le flux de prime par unité de temps c que l'on doit assurer pour obtenir au moins $R = R_0$?

Indication: on cherche à exprimer c en fonction de $m_S(R)$.

Exercice 5.

Pour une sous-martingale positive $(M_n)_{n\geq 0}$, on rappelle l'inégalité de Doob :

$$\forall x \ge 0, \ x \mathbb{P}(\sup_{1 \le k \le n} M_k \ge x) \le E[M_n].$$

Soit N un processus de Poisson homogène d'intensité λ , et $S_i = N(i)$ pour tout entier i.

- 1. Déterminer une suite $(u_n)_{n\geq 0}$ telle que $\exp(1/2S_n u_n)$ soit une martingale par rapport à sa filtration naturelle et appliquer l'inégalité de Doob.
- 2. Soit $0 \le \alpha \le 1$, et soit q_{α} le plus petit réel tel que $\mathbb{P}(\sup_{0 \le k \le n} S_k \ge q_{\alpha}) \ge \alpha$. Déduire une majoration de q_{α} .
- 3. Mêmes questions avec $S_i = S(i)$ où S est un processus de Poisson composé où les X_i ont une transformée de Laplace ψ_X .