
BASICS OF EXTREME VALUE THEORY FOR ACTUARIES

NOTES OF OLIVIER WINTENBERGER

1. Motivation for Actuaries

Extreme Value Theory (EVT) is a critical tool for actuaries, particularly in the as-
sessment of rare but high-impact events. Its applications span risk management, capital
requirement estimation, and solvency assessment.

1.1. Solvency Assessment. Solvency II is a regulatory framework for insurance and rein-
surance companies in the European Union. It requires firms to hold sufficient capital to
withstand extreme financial stress. The Solvency Capital Requirement (SCR) is the amount
of capital required to ensure that the (re)insurance company can meet its obligations over
the next 12 months with a probability of at least 99.5%. Formally, this is expressed as:

P
(

min
06t61

Rt 6 −c0

)
= 0.005,

where:

• (Rt)06t61 represents the company’s reserve evolution over the next year,
• c0 is the capital requirement to be estimated to cover potential losses,
• 0.005 is the probability level associated with the ruin event.

This risk measure is complex and often requires closed-form solutions under specific con-
ditions, such as the standard formula (which assumes a Gaussian setting) or ruin probability
calculus (e.g., Lindeberg’s model under the Cramér assumption). The Cramér assumption
requires the existence of a constant c > 0 such that:

E[exp(c|Rt|)] <∞, 0 < t < 1.

This assumption is restrictive, as it implies that the cost process −Rt has moments of
all orders. However, in practice, costs −Rt can exhibit extremely large values, raising the
question:

What happens in more realistic scenarios where the costs −Rt can have infinite moments
of order k > 1?

EVT provides tools to address this question by modeling the tails of distributions, allow-
ing actuaries to estimate the probability and impact of extreme events even when traditional
gaussian or exponential moment-based methods fail [3, 6]. In cases where no closed-form
solution exists, stress testing and scenario analysis are commonly used in practice.
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1.2. Insurability. EVT is especially relevant for assessing operational risk and catastrophic
losses in insurance. The fundamental principle of insurability is rooted in the cost/frequency
formula, which assumes well-behaved claim costs and frequencies. Specifically, consider a
portfolio where:

• Claim costs (Ci) are independent and identically distributed (iid),
• The number of claims N is a random variable, independent of (Ci).

The total risk I is given by the aggregate claim amount:

I =
N∑
i=1

Ci.

Under these assumptions, the expected total risk is:

E[I] = E
[ N∑
i=1

Ci

]
= E[N ] · E[C].

The total premium π must at least cover the expected risk, i.e., π ≥ E[I]. This premium
is then spread across policyholders, reflecting the principle of risk mutualization.

However, this basic principle only holds under the following assumptions:

• Independence between claim costs and claim frequency,
• Finite first moment of claim costs, i.e., E[C] <∞.

Insurability issues arise when these assumptions are violated, particularly when E[I] =
∞. In such cases, the expected value E[I] is no longer a meaningful measure of risk. Instead,
the focus shifts to the tail distribution of I, specifically the probability P(I > π), where π
is the total premium.

When the catastrophic event {I > π} (for large π) is primarily driven by an individual
claim M = max16i6N Ci with an extremely large cost, the mutualization principle breaks
down. We will see that this may occur when the claim distribution is so heavy-tailed that
E[Ck] =∞ for some k > 1.

In such scenarios, reinsurance becomes essential to mitigate the risk of catastrophic
losses and ensure the insurability of the portfolio. For example, natural catastrophes often
trigger specialized reinsurance mechanisms, sometimes activated or backed by governments
to manage systemic risks.

1.3. Reinsurance. Reinsurance is a risk management tool used by insurance companies
to transfer a portion of their risk portfolio to another party, typically a reinsurer. This
practice helps insurers stabilize their financial results, protect against catastrophic losses,
and maintain solvency.

The primary insurer cedes a part of its risk exposure to the reinsurer, reducing its liability
for large or unexpected claims. Common forms include:

• Proportional reinsurance, where risks and premiums are shared proportionally be-
tween the primary insurer and the reinsurer.
• Non-proportional reinsurance, where the reinsurer covers claims exceeding a certain

threshold u > 0, e.g., excess-of-loss reinsurance.

In non-proportional reinsurance, the risk is formalized as follows:
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• The primary insurer’s risk is Ci ∧ u for each claim Ci.
• The reinsurer’s risk is (Ci − u) · 1(Ci > u).

The expected risk for the primary insurer is then:

E
[ N∑
i=1

Ci ∧ u
]

= E[N ] · E[C ∧ u].

For large π, the event {X > π} is no longer equivalent to {M > π}, as the reinsurer’s
risk may be driven by a single catastrophic claim M satisfying M > u. Mutualization is
not possible for the reinsurer, as their risk exposure is concentrated on extreme events.
Therefore, reinsurers must design contracts with primary insurers that focus on specific
potential catastrophic events.

EVT is useful for the primary insurer to leverage reinsurance, allowing insurance com-
panies to underwrite policies that would otherwise be uninsurable due to the potential for
catastrophic losses. For the reinsurer, EVT is even more critical, as it informs the design
and pricing of reinsurance contracts or treaties, particularly for extreme and unpredictable
events such as natural disasters.

2. First Principles in Extreme Value Theory

2.1. Order Statistics. Most actuarial problems involve estimating a quantile qp of level
p ∈ (0, 1), defined as:

qp = F←(p) := inf{x : F (x) ≥ p},
where F← is the generalized inverse of the cumulative distribution function (CDF) F (x) =
P(X ≤ x), which is right-continuous (cdlg). The Value-at-Risk (VaR) serves as the ac-
tuarial analog of a quantile and is the most widely used risk measure in quantitative risk
management:

Definition 2.1 (VaR). The Value-at-Risk of order p ∈ (0, 1) is defined as:

VaRp = inf{x ∈ R : P(X ≤ x) ≥ p}.

Estimating VaR relies primarily on the asymptotic behavior of order statistics:

Definition 2.2 (Order Statistics). Let (Xi)1≤i≤n be an iid sample with distribution F . The
ordered sample is denoted by (X(i))1≤i≤n, such that:

X(n) ≤ · · · ≤ X(2) ≤ X(1) almost surely (a.s.).

Here, Mn := X(1) is the sample maximum, mn := X(n) is the sample minimum, and X(i)

is the i-th largest order statistic for i = 1, . . . , n.

The empirical distribution function connects order statistics to the quantiles of the em-
pirical distribution:

Definition 2.3 (Empirical Distribution). Given a sample X1, . . . , Xn with distribution F ,
the empirical distribution function is defined as:

F̂n(x) =
1

n

n∑
t=1

1(Xt ≤ x), x ∈ R.



4 BASICS OF EXTREME VALUE THEORY FOR ACTUARIES

The empirical distribution function F̂n(x) : R→ [0, 1] is right-continuous and monoton-
ically increasing, with jumps at the order statistics of the sample.

Figure 1. Empirical CDFs for t-Student, Exponential, Gaussian, and Uni-
form distributions.

Note that F̂n(X(1)) = 1, F̂n(X(2)) = 1 − 1
n , and in general, F̂n(X(k+1)) = 1 − k

n for
k = 1, . . . , n− 1. This justifies using order statistics as estimators of the quantile function.
An estimate q̂1−k/(n+1) of the (1− k

n+1)-th quantile is given by:

q̂1−k/(n+1) = F←n

(
1− k

n+ 1

)
= inf{x ∈ R : F̂n(x) > 1− k

n+ 1
}.

This relation holds if:

1

n

n∑
t=1

1(Xt > q̂1−k/(n+1)) <
k

n+ 1
=
k

n

(
1− 1

n+ 1

)
,

which implies q̂1−k/(n+1) = X(k). These are the empirical quantiles of the sample. To assess
the quality of this approximation, we use a standard tool called the QQ-plot.

Definition 2.4 (QQ-plot). The QQ-plot is the scatterplot of points:(
F−1

(
1− k

n+ 1

)
, X(k)

)
,
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where F is the true distribution function of the sample.

Figure 2. QQ-plot for a sample from a normal distribution.

The following theorem establishes the asymptotic normality of order statistics as empir-
ical quantiles:

Theorem 2.5. Let X1, X2, . . . , Xn be iid with distribution F . For 0 < p < 1, let qp =
F−1(p). Assume F is differentiable at qp with density f , where f(qp) > 0, and let k =
k(n) = d(1− p)ne. Then,

√
n(X(k) − qp)

d−→ N
(

0,
p(1− p)
f(qp)2

)
, as n→∞.

2.2. Asymptotics for Maxima.

2.2.1. Extreme Order Statistics. We first examine the asymptotic properties of X(1) =
max1≤i≤nXi = Mn (where kn = 1 satisfies kn/n → 0 as n → ∞). For every x ∈ R, we
have:

P(Mn ≤ x) = P
(

max
1≤i≤n

Xi ≤ x
)

= F (x)n.

In practice, this is not directly useful because F is unknown, and estimating F does not
resolve the challenge of determining the extreme quantile q1−1/n satisfying F (q1−1/n) =

1 − 1/n. Instead, we focus on the tail of F specifically, on F = 1 − F when its values are
close to 0–or directly on the distribution of Mn.

Note that:

Fn(x) −−−→
n→∞

{
0 if x < xF ,

1 if x ≥ xF ,

where xF = sup{x ∈ R : F (x) < 1} is the right endpoint of F . Thus, Mn converges in
distribution to δ{xF } (a degenerate distribution).
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2.2.2. The Extreme Value Theorem. Assume there exist sequences (an) and (bn) such that:

a−1
n (Mn − bn)

d−→MS, as n→∞.
Then,

P(a−1
n (Mn − bn) ≤ x) = F (anx+ bn)n → P(MS ≤ x).

For simplicity, consider the case where bn = 0 for all n ≥ 1. Then,

P(a2nX(1) ≤ x) = F (x/a2n)2n → P(MS ≤ x),

but also, if an/a2n → c as n→∞,

P(a−1
2nMn ≤ x) = F (an(a2n/an)x)2n ∼ (F (an(cx))n)2 → P(MS ≤ cx)2.

This leads to a stability equation for g(x) = log(P(MS ≤ cx)), satisfying:

There exists c > 0 such that g(x) = 2g(cx), x > 0.

The solution g is a power function. Being non-decreasing and negative, it admits the form
−x−1/γ , x > 0, γ > 0. More generally,

Theorem 2.6 ([4, 5]). If there exist sequences an > 0 and bn, and a non-degenerate
distribution G, such that:

P
(
Mn − bn

an
≤ x

)
= Fn(anx+ bn)

d−−−→
n→∞

G(x),

then G belongs to the Generalized Extreme Value (GEV) family:

Gµ,σ,γ(x) = exp

(
−
(

1 + γ
x− µ
σ

)−1/γ

+

)
, x ∈ R.

For γ = 0, the right-hand side extends by continuity to exp(− exp(−(x− µ)/σ)).

The GEV family (Gµ,σ,γ)µ,σ,γ is called the Generalized Extreme Value distribution,
where:

• µ ∈ R is the location parameter,
• σ > 0 is the scale parameter,
• γ ∈ R is the shape parameter, reflecting tail heaviness.

The theorem suggests modeling the maximum of ”long sequences” using the GEV family.

2.2.3. Max-Stable Laws and Fréchet Distribution. A random variable Y is max-stable if,
for any n ∈ N, there exist an > 0 and bn ∈ R such that:

Mn = max{Y1, . . . , Yn}
d
= anY + bn,

where Yi are iid copies of Y . When bn = 0, the logarithm of the pdf satisfies the stability
equation:

For every n ≥ 2, there exists an > 0 such that g(anx) = ng(x), x > 0.

Thus, Y follows a GEV distribution, and a−1
n Mn − bn converges to Y .

Max-stability extends to Rd for d ≥ 1. For d = 1, GEV distributions can be reparametrized
into three max-stable families based on the sign of γ:

• Fréchet: Φα(x) = exp(−x−α), α = 1/γ > 0, x > 0,
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Figure 3. Survival functions of the GEV distribution.

• Weibull: Ψα(x) = exp(−(−x)α), α = −1/γ > 0, x < 0,
• Gumbel: Λ(x) = exp(−e−x), x ∈ R.

In the Fréchet case, Y is max-stable with P(Y ≤ x) = exp(−x−α), and:

P(Mn ≤ x) = exp(−(anx+ bn)−α).

Choosing an = n1/α = nγ and bn = 0 yields:

P(Mn ≤ x) = exp(−x−α),

demonstrating max-stability. This case is critical in actuarial science because xF = +∞,
Mn → ∞ a.s., and the maximum Mn is stochastically of order an → ∞. The Fréchet
distribution is thus useful for modeling maxima in risk settings.

For the Weibull case, an = n−1/α = nγ ensures Mn < 0 converges to xF = 0. This case
is typically excluded in actuarial science as it does not involve risk beyond xF <∞.

The Gumbel case is intermediate: xF =∞, an = 1, and bn = log n, so the stochastic order
of the maximum is not significantly higher than that of an individual observation. While
the Gumbel distribution requires caution in quantitative risk management, it is common in
environmental sciences for bounded measurements where some risk extrapolation is desired.

2.2.4. Max-Domain of Attraction. If F satisfies the assumptions of the extreme value the-
orem (i.e., there exist an > 0 and bn such that a−1

n (Mn − bn) converges to Gγ), then F is
said to belong to the max-domain of attraction of Gγ , denoted F ∈ MDA(Gγ).

To fully describe the MDA, it is convenient to use quantile functions. We compute:

G←γ (p) =
(− log p)−γ − 1

γ
.

As n→∞,

F (anx+ bn)n → Gγ(x) ⇐⇒ F←(p1/n)− bn
an

→ (− log p)−γ − 1

γ
.
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Definition 2.7 (Extreme Quantile Function). For t > 1, the extreme quantile function is:

U(t) =

(
1

1− F

)←
(t) = F←

(
1− 1

t

)
.

The following result characterizes the MDA in terms of the asymptotic behavior of U :

Theorem 2.8 ([1, 7]). For γ ∈ R, the following are equivalent:

(1) There exist sequences an > 0 and bn such that:

lim
n→∞

Fn(anx+ bn) = Gγ(x).

(2) There exists a positive function a such that for all x > 0:

lim
t→∞

U(tx)− U(t)

a(t)
= Dγ(x) =

xγ − 1

γ
.

For γ = 0, the right-hand side equals log x.

Statement (1) holds with bn = U(n) and an = a(n) = γ(U(ne)− U(n))/(eγ − 1).

2.2.5. Regular Variation. For γ > 0, we have:

lim
t→∞

U(tx)− U(t)

U(te)− U(t)
=
xγ − 1

eγ − 1
,

or equivalently, limt→∞ U(tx)/U(t) = xγ for all x > 0. Thus, U generalizes a power
function.

Definition 2.9. A function ` is slowly varying if `(tx)/`(t)→ 1 as t→∞.

Definition 2.10. A function f is regularly varying of index γ > 0 if f(x) = xγ`(x) for
some slowly varying `.

Regularly varying functions of index γ are the only functions satisfying limt→∞ f(tx)/f(t) =
xγ . If f is invertible, its inverse f← is regularly varying of index 1/γ.

From the above, F ∈ MDA(Gγ) for γ > 0 if and only if U is regularly varying of index
γ, which in turn holds if and only if U← is regularly varying of index 1/γ. Since:

U←(t) = F←
(

1− 1

t

)
=

(
1

1− F

)←
(t),

we conclude:

Proposition 2.11. A random variable X ∈ MDA(Gγ) for γ > 0 if and only if P(X > x) =

x−1/γ`(x) for some slowly varying `.

For γ > 0, we find:

an = a(n) = γ
U(ne)− U(n)

eγ − 1
∼ γU(n).

Thus, an ∝ bn when γ > 0, simplifying estimation. This relation no longer holds for γ = 0.
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2.2.6. Von Mises Condition. A tractable sufficient condition for F ∈ MDA(G0) is more
complex. Under regularity assumptions:

Theorem 2.12 ([8]). If F ′′ exists, F ′ is positive, and:

lim
t→xF

(
1− F
F ′

(t)

)′
= γ,

then F ∈ MDA(Gγ).

For γ = 0, this provides a sufficient condition based solely on F and its derivatives:

lim
x→∞

(
P(X > x)

f(x)

)′
= 0.

This condition can be verified for classical distributions such as the exponential or Gaussian.

2.3. Asymptotics for Exceedances.

2.3.1. Exceedance Distribution (γ > 0). In EVT, we focus on high values such as maxima.
Another approach is to fix a high threshold u > 0 and analyze exceedances:

Definition 2.13 (Exceedance). An exceedance above level u > 0 is X − u given X > u.

Exceedances are particularly relevant in excess-of-loss reinsurance contracts. For a sam-
ple X1, . . . , Xn and threshold u > 0, the exceedances Xi−u for Xi > u follow the distribu-
tion:

P(X − u ≤ x | X > u) = 1− P(X > x+ u)

P(X > u)
.

Thus, X ∈ MDA(Gγ) for γ > 0 if and only if P(X > x) = x−1/γ`(x), which implies:

P(X − u ≤ (γu)x | X > u)→ 1− (1 + γx)−1/γ , u→∞.

This means X ∈ MDA(Gγ) for γ > 0 if and only if its exceedances asymptotically follow a
power-law tail.

Definition 2.14. A random variable Y is Pareto-distributed with tail index α > 0 if P(Y >
x) = x−α for x > 1.

A Pareto random variable has finite moments of order k < α and infinite moments of
order k ≥ α. We can summarize our findings as:

∃(an), (bn),L(a−1
n (Mn − bn))→ Gγ , γ > 0 ⇐⇒ L(X/u | X > u)→ L(Y ), u→∞,

where Y is Pareto-distributed with tail index α = 1/γ.

2.3.2. Balkema–de Haan–Pickands Theorem. Theorem 2.8 has an equivalent form involving
exceedances, which is useful in statistics:

Theorem 2.15 ([1, 7]). For γ ∈ R, the following are equivalent:

(1) There exist sequences an > 0 and bn such that:

lim
n→∞

Fn(anx+ bn) = Gγ(x).
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(2) There exists a scaling function a′ > 0 such that for all x > 0:

lim
u→∞

P(X − u ≤ a′(u)x | X > u)→ Hσ,γ(x) = 1−
(

1 + γ
x

σ

)−1/γ

+
,

with σ > 0. One can choose a′(u) = a(1/P(X > u)).

For γ = 0, the limit reads 1− exp(−x/σ).

If F satisfies these assumptions, we say F belongs to the domain of attraction of the
excesses of Hσ,γ . For γ > 0, we have a′(u) ∼ γu, consistent with a′(u) = a(1/P(X > u))
and a ∼ γU .

In summary, belonging to the domain of attraction of a max-stable distribution is equiv-
alent to two properties:

(1) The standardized sequences of maxima converge to a GEV distribution.
(2) The standardized sequences of excesses converge to a Generalized Pareto Distribu-

tion (GPD). We denote this as F ∈ MDA(Hγ), γ ∈ R.

These equivalent properties underpin statistical methods for extremes.

3. Statistical Methods for Extreme Value Theory

Let X1, . . . , Xn be an iid sample from F . Assume F ∈ MDA(Gγ) = MDA(Hγ).

3.1. Parametric Models and Estimation.

3.1.1. Block Maxima Method. Since F ∈ MDA(Gγ), there exist sequences (an) and (bn),
with an > 0, such that:

a−1
n (max(X1, . . . , Xn)− bn)

d−→ G0,1,γ(x), n→∞.
The theorem suggests modeling block maxima using the GEV family. In practice, estimat-
ing (an) and (bn) is challenging. For large n, we approximate:

P
(
Mn − bn

an
≤ x

)
≈ G0,1,γ(x) ⇐⇒ P(Mn ≤ x) ≈ Gbn,an,γ(x).

Thus, (an) and (bn) can be interpreted as the first two parameters of the GEV model
applied to the maximum.

The block maxima method constructs an iid sequence of maxima to fit a GEV distribu-
tion. Given iid random variables X1, . . . , Xn, assume n = kr for simplicity. Partition these
into k blocks of equal size r:

X1, . . . , Xr︸ ︷︷ ︸
Block 1

| Xr+1, . . . , X2r︸ ︷︷ ︸
Block 2

| · · · | X(k−1)r+1, . . . , Xkr︸ ︷︷ ︸
Block k

.

For each block j, compute the maximum:

Mr,j = max{X(j−1)r+1, . . . , Xjr},
yielding an iid sequence of block maxima Mr,1, . . . ,Mr,k. A GEV distribution is then fitted
to these maxima. In practice, blocks often correspond to annual periods, where r is the
number of observations per year and Mr,j represents annual maxima.

The most common statistical approach is Maximum Likelihood Estimation (MLE), though
this is technically a quasi-likelihood since we do not assume Mr,1 is exactly GEV-distributed
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(true only if F is max-stable). The approach may thus be biased due to model misspecifi-
cation.

The MLE requires the GEV density gµ,σ,γ on its support 1 + γ(x− µ)/σ > 0:

gµ,σ,γ(x) =
1

σ

(
1 + γ

x− µ
σ

)−(γ+1)/γ

exp

(
−
(

1 + γ
x− µ
σ

)−1/γ
)
.

Let θ = (µ, σ, γ) ∈ Θ = R× (0,∞)× R. The pseudo-likelihood is:

Lk(θ) =

k∏
i=1

gθ(Mr,i).

The MLE is defined as:

θ̂k ∈ arg max
Θ

Lk(θ),

provided the optimization is well-posed. Here, µ̂k approximates br and σ̂k approximates ar,
though they may not converge.

Under model regularity and if Mr ∼ Gγ , the MLE satisfies:
√
k(γ̂k − γ)

d−→ N (0, σ2
γ), k →∞,

where σ2
γ is the asymptotic variance. Key remarks: - For γ > −0.5, the MLE is regular,

and asymptotic normality is plausible. - For −1 ≤ γ ≤ −0.5, the MLE exists but may
not satisfy asymptotic properties. - For γ < −1, the optimization may lack a solution,
precluding a valid MLE.

In practice, the assumption Mr ∼ Gγ is replaced by X ∈ MDA(Gγ). Thus, asymptotic
normality: √

k(γ̂k − γ)
d−→ N (0, σ2

γ), k →∞,
may only hold if r → ∞, ensuring the model becomes well-specified as n → ∞. Both
k → ∞ and r → ∞ are thus required. Selecting the block size r involves a bias-variance
trade-off: small blocks may render the approximation unreasonable (high bias), while large
blocks reduce the number k = n/r of maxima (high variance). Practical constraints (e.g.,
only annual maxima available) often dictate yearly blocks. Even with finer data (e.g.,
daily), annual maxima analyses tend to be more robust, as shorter blocks (e.g., seasonal)
may violate iid assumptions. For example, daily temperatures exhibit seasonal patterns,
making summer maxima systematically larger than winter maxima.

3.1.2. Peaks Over Threshold (POT) Method. The Peaks-over-Threshold (POT) method
analyzes extreme events in an iid dataset X1, . . . , Xn where X ∼ MDA(Hγ), γ > 0. An
extreme event is any observation exceeding a threshold u, i.e., Xj > u for j = 1, . . . , k. The
corresponding exceedances are:

Zu = Xj − u for Xj > u,

forming an iid sequence of random length k. We condition on k, achieved by setting
u = X(k+1), the (k+1)-th largest order statistic. This choice is sometimes called POT with
a random threshold (and deterministic exceedances). Dependence in Zu,1, . . . , Zu,k due to
u = X(k+1) is neglected by conditioning on u.



12 BASICS OF EXTREME VALUE THEORY FOR ACTUARIES

Theorem 2.15 suggests modeling exceedances above a sufficiently high threshold using
the Generalized Pareto Distribution (GPD) family. In practice, we estimate functions a
and b satisfying:

P(Zu ≤ a′(u)x) ≈ H1,γ(x) ⇐⇒ P(Zu ≤ x) ≈ Ha′(u),γ(x).

Let θ = (σ, γ) ∈ Θ = (0,∞)× R. The GPD density on its support 1 + γx/σ > 0 is:

hσ,γ(x) =
1

σ

(
1 + γ

x

σ

)−(γ+1)/γ
.

The MLE is defined as:

θ̂k ∈ arg max
Θ

Lk(θ),

where Lk is the pseudo-likelihood:

Lk(θ) =

k∏
i=1

hθ(Zu,i).

Here, σ̂k approximates a′(u) but may not converge. If Zu ∼ Gγ and γ > −0.5, the model
is regular, and: √

k(γ̂k − γ)
d−→ N (0, σ2

γ), k →∞.
In practice, Zu ∼ Gγ only for sufficiently large u; otherwise, the approach is biased due to
model misspecification.

Choosing the threshold u involves a bias-variance trade-off similar to block size selection.
A threshold set too low may violate asymptotic assumptions, while an excessively high
threshold yields too few exceedances, increasing estimation variance. One approach is to
select the lowest u for which the GPD approximation remains valid. The Mean Residual
Life (MRL) plot assists in threshold selection:

Definition 3.1 (Mean Residual Life (MRL)). The MRL at time u is the expected remaining
lifetime given survival up to u:

e(u) = E[X − u | X > u] =

∫∞
u P(X > t) dt

P(X > u)
.

We have the following result:

Proposition 3.2. If F ∈ MDA(Hγ) with γ < 1 and γ 6= 0, then e(u) behaves as γ
1−γu for

large u.

The MRL can be estimated non-parametrically by replacing P(X > u) with Fn(u), where
Fn is the empirical CDF:

ê(u) =

∑n
i=1(Xi − u)+∑n
i=1 1(Xi > u)

=
1

k

k∑
i=1

(X(i) − u),

where X(1) ≥ · · · ≥ X(n) are the order statistics and k is the number of exceedances.
Plotting ê(u) against u helps identify intervals where the MRL is approximately linear.
The threshold u∗ is chosen at the start of the linear region to maximize k and minimize
variance.
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Figure 4. Example MRL plot. Threshold u∗ ≈ 30 is chosen at the begin-
ning of the linear increase. Source: [2].

The MRL is related to the Expected Shortfall (ES) or Conditional Value-at-Risk (CVaR),
defined as:

ESp(X) = E[X | X > qp],

for a quantile qp of level p. The relation ”MRL + VaR = CVaR” holds.

3.1.3. The Hill Estimator for Positive Tail Index (γ > 0). The asymptotic normality of
block maxima (BM) and POT estimators of γ is complex because γ̂k lacks a closed form.
For an iid sample (Xi) with F ∈ MDA(Gγ) and γ > 0, we use:

lim
u→∞

P(X/u ≤ y | X > u)→ H1,γ(y) = 1− y−1/γ , y > 0.

The normalized exceedances Z ′u,i = Xi/u givenXi > u are approximately Pareto-distributed.
The MLE for γ is:

γ̂k = arg max
γ>0

L′k(γ) =
1

k

k∑
i=1

lnZ ′u,i.

The Hill estimator formalizes this heuristic by choosing a random threshold u = X(k+1)

to fix the number of exceedances to k:

Definition 3.3 (Hill Estimator). The Hill estimator is defined as:

γ̂H(k) =
1

k

k∑
i=1

ln
X(i)

X(k+1)
.
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The following asymptotic normality result holds:

Theorem 3.4 (Asymptotic Normality). For kn →∞ sufficiently slowly as n→∞:√
kn (γ̂H(kn)− γ)

d−→ N (0, γ2).

Proof. We consider Renyi’s representation of extremes order statistics: Xi = F←(U(i))
where U(1) > · · · > U(n) is the ordered sample of (Ui) uniformly distributed. Then

U(i) = 1− E1 + · · ·+ Ei
E1 + · · ·+ En+1

, 1 6 i 6 n ,

where (Ei) is an iid ∼ Exp(1). Recall the function U(t) = F←(1 − 1/t) that is regularly
varying with index γ > 0: U(t) = tγ`(t) for a slowly varying function `. We rewrite the
Hill estimator as

1

k

k∑
i=1

ln
U(E1+···+En+1

E1+···+Ei
)

U(E1+···+En+1

E1+···+Ek+1
)

=
γ

k

k∑
i=1

ln
E1 + · · ·+ Ek+1

E1 + · · ·+ Ei
+

1

k

k∑
i=1

ln
`(E1+···+En+1

E1+···+Ei
)

`(E1+···+En+1

E1+···+Ek+1
)
.

Applying again Reny’s representation on the first summand, we obtain

γ

k

k∑
i=1

ln
E1 + · · ·+ Ek+1

E1 + · · ·+ Ei
= −γ

k

k∑
i=1

ln(1− U(i)) =
γ

k

k∑
i=1

− lnUi =
γ

k

k∑
i=1

Ei .

We prove that the second summand is negligible for k fixed. Denoting tn,k = E1+···+En+1

E1+···+Ek+1

and using again Renyi’s representation we have

1

k

k∑
i=1

ln
`(E1+···+En+1

E1+···+Ei
)

`(E1+···+En+1

E1+···+Ek+1
)

=
1

k

k∑
i=1

ln
`(tn,k/Ui)

`(tn,k)
.

By the SLLN we have tn,k ∼ n/(E1 + · · ·+Ek+1)→∞ a.s. Therefore `(tn,k/Ui)/`(tn)→ 1
as n→∞ by the slow variation property of `, the sum becomes negligible and we obtain

γ̂H(k) ∼ γ

k

k∑
i=1

Ei , n→∞ , k fixed.

When (kn) tends to infinity sufficiently slowly, we can still apply the CLT to the iid sequence
Ei with expectation 1 and variance 1:

√
k
(γ
k

k∑
i=1

Ei − γ
)

d−→ N
(
0, γ2

)
, k →∞ .

The desired result follows. �

Lemma 3.5 (Renyi’s representation). Let U(1) > U(2) > · · · > U(k) be the order statistics
of iid Ui ∼ U(0, 1). Let Ei ∼ Exp(1) be iid, and define the partial sums:

Γj =

j∑
i=1

Ei, j = 1, . . . , k + 1.
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Then, the order statistics of the uniform sample admit the following representation:

(U(1), U(2), . . . , U(k))
d
=

(
Γ1

Γk+1
,

Γ2

Γk+1
, . . . ,

Γk
Γk+1

)
.

Proof. The joint density of (Γ1,Γ2, . . . ,Γk+1) is:

fΓ1,...,Γk+1
(t1, . . . , tk+1) = e−tk+11(0 ≤ t1 ≤ t2 ≤ · · · ≤ tk+1).

This follows from the fact that the increments Ei = Γi−Γi−1 (with Γ0 = 0) are iid Exp(1),
and their joint density is the product of exponential densities.Define the ratios and the total
time as:

Vi =
Γi

Γk+1
for i = 1, . . . , k, and W = Γk+1.

The transformation (t1, . . . , tk+1) 7→ (v1, . . . , vk, w) has Jacobian determinant:

J = wk,

since ti = viw for i = 1, . . . , k and tk+1 = w. The joint density of (V1, . . . , Vk,W ) is
therefore:

fV1,...,Vk,W (v1, . . . , vk, w) = e−wwk1(0 ≤ v1 ≤ · · · ≤ vk ≤ 1).

Integrate the joint density over w > 0 to obtain the marginal density of (V1, . . . , Vk):

fV1,...,Vk(v1, . . . , vk) =

∫ ∞
0

e−wwk dw · 1(0 ≤ v1 ≤ · · · ≤ vk ≤ 1).

The integral evaluates to the Gamma function at k + 1:∫ ∞
0

e−wwk dw = Γ(k + 1) = k!.

Thus, the density of the ratios is:

fV1,...,Vk(v1, . . . , vk) = k! · 1(0 ≤ v1 ≤ · · · ≤ vk ≤ 1).

This is precisely the joint density of the order statistics (U(1), . . . , U(k)) of k iid uniform
random variables on [0, 1]. �

The estimator’s performance depends critically on k, as illustrated by the ”Horror Hill”
plot (Figure 5), where the trade-off between variance (large k) and bias (small k) complicates
practical application.

3.2. Quantile Approximation and Extrapolation. Extreme quantile estimation is fun-
damental in quantitative actuarial risk analysis, coinciding with VaR estimation required
by regulators.

3.2.1. Extrapolation. For a sequence of quantiles q(pn), the probability that the sample
maximum Mn does not exceed q(pn) is asymptotically:

P(Mn ≤ q(pn)) =
n→∞

exp(−npn(1 + o(1))).

Two cases arise based on npn:

(1) If npn → ∞, P(Mn ≤ q(pn)) → 0. The quantile q(pn) lies within the sample
with high probability, and the empirical quantile X(bnpnc) is a natural estimator,
asymptotically normal when pn = p, n ≥ 1.
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Figure 5. Hill plot showing sensitivity to k with the ”Horror Hill” phe-
nomenon. The horizontal axis shows the number of upper order statistics k,
and the vertical axis displays γ̂H(k). Source: [2].

(2) If npn → 0, P(Mn ≤ q(pn)) → 1. The quantile q(pn) lies outside the sample with
high probability, necessitating out-of-sample extrapolation via EVT methods (e.g.,
block maxima or POT).

3.2.2. Quantiles of a GEV Distribution. The quantiles of a GEV distribution are obtained
by inverting its CDF. For Gµ,σ,γ , the quantile qp corresponding to 1− p is:

qp =

{
µ− σ

γ (1− (− log(1− p))−γ) if γ 6= 0,

µ− σ log(− log(1− p)) if γ = 0.

In practice, θ = (µ, σ, γ) is estimated via the block maxima method with blocks of length
r = n/k.

The return level plot visualizes the relationship between the return level qp and return
period T = 1/p. Defining yp = − log(1− p), the return level is:

qp =

{
µ− σ

γ

(
1− y−γp

)
if γ 6= 0,

µ− σ log(yp) if γ = 0.

Plotting qp against − log yp ∼ log T reveals the tail shape: convex for γ > 0, linear for
γ = 0, and concave for γ < 0.

A return level qp based on block maxima over blocks of length r = n/k corresponds to a
return period of rT = r/p.

3.2.3. Quantiles of a GPD. Extreme quantiles can also be interpreted as GPD quantiles.
The GPD CDF is:

Hσ,γ(x) = 1−
(

1 + γ
x

σ

)−1/γ
, x > 0.
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Figure 6. Example return level plot. Source: [2].

The quantile xm for P(X > xm | X > u) = 1− 1/m is:

xm =

{
u+ σ

γ (mγ − 1) if γ 6= 0,

u+ σ log(m) if γ = 0.

The parameter θ = (σ, γ) is estimated via the POT method for exceedances above u.
The value xm represents the threshold exceeded on average every m exceedances. With k
exceedances, P(X > u) ≈ k/n and P(X > xm) ≈ k/(mn), so xm estimates the quantile of
order k/(mn).
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