Feuille de Travaux Dirigés 3 Modèles de la famille exponentielle

Eercice 1 On considère le modèle exponentiel $(\mathcal{E}(\theta), \theta > 0)$.

- 1. Vérifier que le modèle est de la famille exponentielle.
- 2. Montrer que $T_n = (\overline{X}_n)^{-1}$ est un estimateur fortement convergent pour $\theta > 0$.
- 3. En utilisant les résultats de l'exercice 1 du TD2, montrer que $\mathbb{E}_{\theta}(T_n) = n\lambda/(n-1)$.
- 4. Construire un estimateur de variance minimale pour θ noté T'_n en corrigeant T_n .
- 5. L'estimateur de variance minimale est-il efficace?
- 6. Quel estimateur choisir parmi T_n et T'_n ?

Exercice 2 On considère le modèle de Pareto de paramètres $\alpha > 1$ et $\lambda > 0$ et de densité

$$f(x; \alpha, \lambda) = cx^{-\alpha} 1_{[\lambda, +\infty[}(x).$$

- 1. Déterminer la constante de normalisation c.
- 2. Le modèle est-il un modèle régulier pour la paramétrisation $\theta = (\alpha, \lambda)$?
- 3. Donner une statistique exhaustive pour $\theta = (\alpha, \lambda)$.
- 4. On suppose désormais que λ est connu. Montrer que le modèle est de la famille exponentielle pour la paramétrisation $\theta = \alpha$.
- 5. Vérifier que le modèle soit bien identifiable.
- 6. Quelle est la loi suivie par $Y = \log(X/\lambda)$?
- 7. Montrer que le modèle est régulier.
- 8. Calculer l'information de Fisher apportée par l'echantillon pour $\theta = \alpha$.
- 9. A l'aide de l'exercice 1, construire l'estimateur sans biais de variance minimale.