Feuille de Travaux Dirigés 4

Z- et M-estimateurs

Exercice 1 On considère le modèle Binomiale $(\mathcal{B}(N,p),(N,p)\in\mathbb{N}^*\times]0,1[).$

- 1. Dans un premier temps $\theta=(N,p)$. Calculer l'estimateur $\hat{\theta}_n^{MM}$ de θ obtenu par la méthode des moments.
- 2. Donner le comportement asymptotique de $\hat{\theta}_n^{MM}$.
- 3. On s'intéresse désormais à l'estimation de $0 seul, i.e. <math>\theta = p$. Calculer l'estimateur T_n pour la nouvelle paramétrisation $\theta = p$ obtenu par la méthode des moments.
- 4. Montrer que le modèle est de la famille exponentielle.
- 5. Montrer que le modèle est identifiable et régulier.
- 6. Calculer l'unique estimateur de variance minimale. Est-il efficace?
- 7. Donner le comportement asymptotique de T_n .

Eercice 2 Soit le modèle de Cauchy avec changement d'échelle $(P_{a,b}, (a,b) \in \mathbb{R}_+^* \times \mathbb{R})$ tel que

$$f(x, a, b) = \frac{1}{\pi a(1 + a^{-2}(x - b)^{2})}.$$

Dans un premier temps a = 1 est connu et $\theta = b$.

1. On propose l'estimateur T_n de θ :

$$T_n = \tan\left(\frac{\pi}{2n}\sum_{i=1}^n signe(X_i)\right).$$

Comment cet estimateur a-t-il été obtenu? Donner les propriétés asymptotiques de T_n .

- 2. On suppose désormais a > 0 inconnu et que $\theta = (a, b)$. Calculer le premier et le troisième quartile $q_{1/4}$ et $q_{3/4}$.
- 3. En déduire un estimateur W_n en utilisant les quantiles empiriques.
- 4. Quelles sont les propriétés asymptotiques de W_n ?

Exercice 3 Soit le modèle de Laplace $(P_{\theta}, \theta \in \mathbb{R})$ tel que

$$f(x,\theta) = \frac{1}{2} \exp(-|x - \theta|).$$

- 1. Calculer l'estimateur $\hat{\theta}_n^{MM}$ de θ obtenu par la méthode des moments. Quelles sont ces propriétés asymptotiques ?
- 2. Calculer l'estimateur $\hat{\theta}_n^{MV}$ de θ obtenu par la méthode du maximum de vraisemblance.
- 3. Le modèle est-il régulier ? Quelles sont les propriétés asymptotiques de $\hat{\theta}_n^{MV}$?
- 4. Quel estimateur choisir?

Exercice 4 On considère le modèle de Pareto de paramètres $\alpha > 1$ et $\lambda > 0$ et de densité

$$f(x; \alpha, \lambda) = (\alpha - 1)\lambda^{\alpha - 1}x^{-\alpha}1_{[\lambda, +\infty[}(x).$$

On suppose que $\theta = (\alpha, \lambda)$.

- 1. En faisant les hypothèses nécessaires sur Θ , calculer l'estimateur $\hat{\theta}_n^{MM}$ de θ obtenu par la méthode des moments.
- 2. En toute généralité $\Theta =]1, +\infty[\times]0, +\infty[$ calculer l'EMV. Est-il un M-estimateur?
- 3. On suppose désormais que λ est connu et que $\theta = \alpha > 1$. Montrer que la méthode des moments n'est pas applicable. Calculer l'EMV $\hat{\theta}_n^{MV}$ ainsi qu'un estimateur $\hat{\theta}_n^{MMG}$ de θ obtenu par la méthode des moments généralisés (on utilise la loi de $\log(X/\lambda)$ étudiée dans le TD3).
- 4. Calculer le biais de $\hat{\theta}_n^{MV}$. En déduire T_n l'estimateur sans biais de variance minimale.
- 5. Quel estimateur choisir parmi ces 3 estimateurs. Sont-ils efficaces? asymptotiquement efficaces?