Stochastic Simulation and Monte Carlo Methods: Exercise Class 2.

Olivier Wintenberger: olivier.wintenberger@upmc.fr

Exercise 1. The truncated normal distribution is the one of $N \sim \mathcal{N}(0, 1)$ given that N > 0.

- Determine the density of this distribution,
- Compute the efficiency M of the reject sampling from the proposal $Y \sim \mathcal{E}xp(1)$.

Exercise 2. The Beta distribution is given thanks to its density

$$f_{\alpha,\beta}(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \qquad x \in [0,1].$$

Give a reject sampling of the distribution Beta(2,5) with proposal density $Y \sim \mathcal{U}(0,1)$.

Exercise 3. Give the constants a, b_{-} and b_{+} for the ratio algorithm to the following densities h (up to constants)

- Cauchy $h(x) = \frac{1}{1+x^2}$,
- Exponential $h(x) = e^{-x}, x > 0$,

• Gaussian
$$h(x) = e^{-x^2/2}$$

and for each case compute the efficiency of the associated rejection step.

Exercise 4. Let (X, Y) be a standard gaussian vector in \mathbb{R}^2 . Show that its radial part $R = X^2 + Y^2$ and its angular part $\Theta = \arctan(Y/X)$ are independent and distributed as $\mathcal{E}xp(1/2)$ and $\mathcal{U}nif(0, 2\pi)$.

Exercise 5. Show that the mixing distribution such that $X | Y \sim \mathcal{P}oisson(Y)$ with mixing variable $Y \sim \mathcal{G}amma(n, \lambda)$ with $n \ge 1, \lambda > 0$ is a negative binomial distribution of the form

$$\mathbb{P}(X=k) = \binom{k+n-1}{k} p^n (1-p)^k \qquad k \ge 0.$$

Determine p in function of λ and interpret X as the number of trials necessary for obtaining n successes in a specific experiment.

Exercise 6. Assume that $Z \sim \mathcal{B} \mid \nabla \setminus (p)$, $p \in (0,1)$, $X \mid Z = 0 \sim \mathcal{N}(\mu_0, \sigma_0^2)$ and $X \mid Z = 1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ for $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1^2, \sigma_2^2 > 0$.

- 1. What is the name of the distribution of X? Is it discrete or continuous?
- 2. Compute $\mathbb{E}[X|Z]$ and $\mathbb{E}[X]$. Calculate the parameter $p \in (0,1)$ given μ_1, μ_2 and $\mathbb{E}[X]$.
- 3. Compute Var(X) and comment.