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Chapter 1
Stationarity

We focus on discrete time processes (Xt)t∈Z where t refers to time and Xt is a random
variable (generally real-valued). (Xt) is a sequence of random variables on a probability
space (Ω,A,P). Observing (X1, . . . , Xn) at times t = 1, . . . , n, the classical issues in
statistics is to forecast the future at time n: Xn+1, Xn+2, . . . . In order to do so, one infers
the dependence structure of the observed process and one uses it in order to construct a
predictor.

Remark. To achieve the prediction objective, we have to suppose a structure (a model) on
(Xt) so that the information contained in (X1, . . . , Xn) provides information on the future
values of the process. We use the concept of stationarity.

Definition. (Xt) is strictly (or strongly) stationary if for all k ∈ N, the joint distribution
of (Xt, . . . , Xt+k) does not depend on t.

Hence, in order to forecast the future at time n, one can subsample (X1, . . . , Xn) in sam-
ples of length k and use the fact that (Xn−k, . . . , Xn+1) and (X1, . . . , Xk+2), (X2, . . . , Xk+3)
are identically distributed... On these subsamples, the last value is observed so that one
can assert the predictive power of the predictor from the k first values.

If the process is not reasonably likely to be stationary, one cannot rely on the obser-
vations to predict the future. In practice, one has to stationarize our observations first.

1.1 Data pre-processing

Let us assume that we observe data (Dt) indexed by the time t. Our aim is to find a
reasonable transformation Xt of the data Dt such that (Xt) can be reasonably seen as
stationary. We will not discuss potential pre-processing that are not specific to time series
such as missing values, outliers,...

Consider that we are in the univariate case, otherwise the following treatment applies
to each marginals independently. Most of the time series can be decomposed in three
additive parts:

Dt = f(t) + St +Xt, t ≥ 1, (1.1)

where f(t) is the trend part, i.e. a deterministic function f of the time t, St is a seasonal
part with period St+T = St for some period T and Xt should reasonably be stationary. Of
course the decomposition is not unique and it is a hard work to identify each components.

3
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Figure 1.1: Econometrics data exhibiting an exponential (multiplicative) trend that turns
into a linear (additive) trend after log-transform

The additive form in (1.1) is completely artificial and assumed for its simplicity. For
some data as for econometrics time series, a multiplicative form is much more natural. A
log transformation is necessary to obtain the additional decomposition (1.1).

Example. For economics data, it is reasonable to take into account an exponential trend
from the inflation with; for time period t = 1, . . . , n where the interest rate r is assumed
to be fixed, The nominal price Dt is actually the real (deflated) price Pt and the inflation:

Dt = Pte
rt, t ≥ 0.

Due to the presence of an exponential trend, this data cannot be seen as stationary. By
applying the log transform, on obtain

log(Dt) = log(Pt) + rt, t ≥ 0.

The exponential trend is transformed in a linear one that we will treat hereafter. Figure
shows quarterly earnings per share for the U.S. company Johnson & Johnson from 1960
to 1980 in Figure 1.1.

1.1.1 Differencing

Let us treat the trend part f(t) in the decomposition (1.1), assuming that the seasonality
part is null St = 0. In what follows we will consider that f(t) is a polynomial of the time
t. The most common case is the one of linear trend as

f(t) = a0 + b0t, t ≥ 1,

where (a0, b0) are unknown coefficients. As a statistician, a natural approach is to treat
this term as a linear model

Dt = a+ bt+Xt, t ≥ 1.

Then (Xt) is estimated from the residuals of the linear regression It is not the good
approach as we will on an example.

Example. Let us regress the price of chicken in cents on the unit of time from 2001 to
2016 (notice on some short periods economic prices can be reasonably linear trended as
the inflation ert ∼ 1 + rt when rt is small). Then Xt is taken as the residuals from the
linear regression, see Figure 1.1.1.
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Figure 1.2: Estimation of the stationary component in presence of a linear trend thanks
to linear regression on the time.

Let us introduce the important notion of filtration (Ft), which is a sequence of increas-
ing σ-algebras. The events in Ft represent the available information at time t. A natural
way to describe a filtration is to introduce

Definition. A Strong White Noise (SWN) is t some independent and identically dis-
tributed (i.i.d.) sequence (Zt) observed at time t such that E[Z0] = 0 and Var (Z0) < +∞
(possibly multi-dimensional).

A SWN generates the natural filtration Ft = σ(Zt, Zt−1, . . . ). The prediction at time
n cannot use any information from the future Zn+1. The SWN (Zt) is an unpredictable
sequence; for instance, the best prediction for Zn+1 for the quadratic risk given the past
is E[Zt | Zt−1, Zt−2, . . .] = 0. It corresponds to the classical i.i.d. setting studied in any
basic course in statistics; more interesting problem than prediction are usually treated
(estimation and tests).

Definition. Let (Ft) be a filtration. The process (Xt) is non-anticipative relatively to
the SWN (Zt) if Xt ∈ Ft = σ(Zt, Zt−1, . . . ), t ≥ 1. The process (Xt) is invertible if
Xt ∈ Ft = σ(Zt, Xt−1, . . . ), t ≥ 1.

Notice that an invertible process is non-anticipative. The invertibility is the most
important notion in statistics. It means there is an incompressible random error in the
prediction of Xn+1 due to the lack of information Zn+1, unknown and unpredictable at
time n. It is fundamental to avoid degenerate situations (and not reasonable in our random
setting) where one can predict the future from pas observations.

Example (1.1.1, continued). Assume that (Dt) is non-anticipative with respect to (Zt).
Estimating the coefficients (a0, b0) thanks to the linear regression on (D1, . . . , Dn), one
obtains coefficients (â0(D1, . . . , Dn), b̂0(D1, . . . , Dn)). Thus the residuals

X̂t = Dt − â0(D1, . . . , Dn)− b̂0(D1, . . . , Dn)t, 1 ≤ t ≤ n,

is anticipative because they depend on the future Ds and thus Zs for s > t. Such
stationarization transformation does not respect the arrow of time. It is likely that
(â0(D1, . . . , Dn) − b̂0(D1, . . . , Dn)t) overfits the data (D1, . . . , Dn). It usually biases the
predictive power analysis and requires additional care, usually treated via a penalization
procedure.
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Figure 1.3: A linear (additive) trend is removed thanks to differenciation. The obtained
time series has a mean behavior constant in time but exhibits some heteroscedastic be-
havior, i.e. a non constant variance.

Stationarization transformation that respects the arrow of time are based on the dif-
ference operator:

Definition. The lag (or backshift) operator L is defined as LDt = Dt−1 for any data Dt,
t ≥ 1. The difference operator ∇ = Id− L is defined so that ∇Dt = Dt −Dt−1, t ≥ 1.

In our case Dt = a+ bt+Xt, applying the difference operator, we obtain

∇Dt = Dt −Dt−1 = b+∇Xt, t ≥ 1.

If (Xt) is stationary, then b+∇Xt is also and applying the difference operator stationarizes
the data. Notice that the arrow of time is preserved; if (Dt) is non-anticipative with respect
to SWN (Zt) so is (∇Dt).

Example (1.1, continued). On econometric data, the log transformed data log(Dt) =
log(Pt)+rt exhibit a linear trend. Applying the difference operator, we obtain ∇ log(Dt) =
log(Pt/Pt−1) + r which is reasonably stationary. Neglecting the influence of the interest
rate, one calls the obtained process Xt = ∇ log(Dt)(∗100) the log-ratios.

Example (1.1.1, continued). Let us perform the difference operator on the chicken prices
and compare it with the residuals of the linear regression. As residuals from a possibly
overfitted linear regression, the residuals have a very smooth trajectory that seems simpler
to predict than the difference ∇Dt, see Figure 1.1.1. However, it is not the case because
one cannot rely on the residuals to directly predict Dn+1 as

D̂n+1 = â0(D1, . . . , Dn) + b̂0(D1, . . . , Dn)(n+ 1) + X̂n+1,

as one should also take into account the errors of approximation

â0(D1, . . . , Dn)− â0(D1, . . . , Dn+1) and b̂0(D1, . . . , Dn)− b̂0(D1, . . . , Dn+1).

The trend component f(t) can be much more complicated than a simple linear de-
pendence in time. We will treat any polynomial trend thanks to multiple differencing;
consider a polynomial trend of degree 2

Dt = a0 + b0t+ c0t
2 +Xt, t ≥ 1,
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Figure 1.4: The difference operator are more variable then the residuals of the linear
regression.

then, differentiating once, we obtain a linear trend

∇Dt = b0 + c0(2t− 1) +∇Xt = b0 − c0 + 2c0t+∇Xt, t ≥ 1.

As if (Xt) is stationary, so it is (∇Xt), then we are back to the previous case and we
stationarize ∇Dt by differentiating:

∇(∇Dt) = ∇2Dt = Dt − 2Dt−1 +Dt−2 = 2c0 +∇2Xt, t ≥ 1.

In this case (2c0 +∇2Xt) corresponds to the stationarized version of (Dt). By a recursive
argument, we see that we can treat any polynomial trend by successive differencing. Suc-
cessive applications of the difference operator respect the arrow of the time. Moreover, it
is simple to come back to the orignal data Dt by the inverse operator, called integration.
For instance, denoting Xt = ∇2Dt, assuming that it is stationary so that we can construct
a predictor X̂n+1 then

D̂n+1 = X̂n+1 + 2Dn −Dn−1.

It seems that there is no limit in the differencing process: the more you differentiate
and the more you are likely stationary. However, there is a caveat. Consider for instance
one observes a SWN (Dt) in R with finite variance σ2. Then ∇Dt = Dt − Dt−1 is
also stationary, so it is tempting to erroneously differentiate the observations. However,
Var (∇Dt) = 2σ2 > Var (Dt) and the variance of the differentiate process is larger than the
original one. More generally, the stationarization by successive differencing should stop
when it increases the variance, i.e. when Var (∇Xt) > Var (Xt). Then (Xt) is considered
as the stationary version of the data.

1.1.2 Seasonal coefficients

Let us treat the seasonal part St in the decomposition (1.1), assuming that the trend part
is null f(t) = 0. Notice that in practice it is not a restriction; the previous discussion on
removing the trend part is extendable in presence of a seasonal component St 6= 0. Thus,
one can always assume that successive differencing of the data removed the trend part and
one applies the seasonality decomposition that follows.

As St+T = St, knowing the period T the seasonal coefficients (Sj)1≤t≤T are easily
estimated by the empirical mean

Ŝj =
T

n

∑
1≤t=kT+j≤n

Dt, 1 ≤ j ≤ T.
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Figure 1.5: The orignal data (Dt), the 4 seasonal coefficients (Ŝj)1≤j≤4 and the seasonally
adjusted time series (Xt = Dt − St). It may be a polynomial trend in (Xt). Differencing
could be applied, upstream the seasonal adjustment that should be recalculate.

This transformation breaks the arrow of time. Thus, there is a risk of overfitting and
it should be applied only if there is a strong suspicion of seasonality. For instance, for
monthly data the period is very likely to be a year, i.e. T = 12. It could also be 2 or 3
years but choosing a too long period is dangerous, as it increases the risk of overfitting
thanks to the seasonal coefficients.

Example. Consider the quarterly occupancy rate of Hawaiian hotels from 2002 to 2016.
There is a strong suspicion of a seasonality of period T = 4. Thus, one can compute the
4 seasonal coefficients. One can notice that the spring and autumn coefficients are equals,
thus one could suspect a shorter (preferable) period T = 2. However, it is not the case as
the winter and summer coefficients (the busy seasons) are significantly different.

Note that by considering seasonality with possibly period T = 1, the seasonally ad-
justed time series is centered E[Xt] = 0.

1.2 Second order stationarity

We consider now that pre-processing has been applied and that (Xt) is reasonably sta-
tionary and centered. Let us first consider that it is reasonably stationary of the second
order which implies some homoscedasticity (constant variance in time, not a lot of extreme
values).

Definition. The (possibly multivariate) time series (Xt) is second order stationary (or
weakly stationary) if E [Xt] and E

[
XtX

>
t+k

]
exist and do not depend on t, for all k ∈ N.

Remark. Strong stationarity combined with the existence of second order moments imply
second order stationarity.

1.2.1 Autocorrelations

Definition. Let (Xt) be a centered second order stationary process (univariate). We
define, for any h ∈ Z:

• the autocovariance function:

γX(h) = Cov (Xt, Xt+h) = Cov (X0, Xh) = E [X0Xh] ,
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Figure 1.6: A trajectory and the corresponding ACF of a SWN and its squares

• the autocorrelation function:

ρX(h) = ρ (Xt, Xt+h) =
γX(h)

γX(0)
.

• The cross-covariance function:

γXY (h) = Cov (Xt, Yt+h) = E [X0Yh]

for (Yt) an auxiliary centered second order stationary process.

• The cross-correlation function:

ρXY (h) =
γXY (h)√
γX(0)γY (0)

for (Yt) an auxiliary centered second order stationary process.

The sequences (γX(h))h∈Z or (ρX(h))h∈Z completely determine the second order prop-
erties of a second order stationary process (Xt).

Remark.

• We can restrict ourselves to N, as ∀h ∈ Z, γX(h) = γX(−h).

• γX(0) = Var (Xt) and ρX(0) = 1.

Example. If (Xt) is a SWN with X0 ∼ P , then (Xt) is stationary and (Xt, . . . , Xt+k) ∼
P⊗(k+1). Moreover γX(0) = Var (Xt) = σ2 exists and Xt is also weak-sense (second order)
stationary and γX(h) = 0 for h ≥ 1. We denote SWN(σ2).

Definition. A weak white noise is a second order stationary processus (Xt) such that:

µX = E[Xt] = 0 and γX(h) =

{
σ2 if h = 0
0 otherwise

We denote (Xt) ∈WN(σ2).

Exercise. Find an example of a white noise which is not i.i.d. stationary.



10 CHAPTER 1. STATIONARITY

1.2.2 Linear time series

We have the following definition

Definition. A time series is linear if it can be written as the output of a linear filter
applied to a WN: let (Zt) be WN and (ψj) be a linear filter, i.e. a series of deterministic
coefficients such that

∑
j∈Z ψ

2
j < ∞, then Xt =

∑
j∈Z ψjZt−j , j ∈ Z is a centered linear

time series.

We have to prove the existence of the infinite series
∑

j∈Z ψjZt−j . Actually, it derives
from the existence of second order moments which a by-product of the following result:

Proposition. Let (Zt) be WN(σ2) and
∑

j∈Z ψ
2
j <∞, then Xt =

∑
j∈Z ψjZt−j, j ∈ Z is

a second order stationary time series satisfying

γX(h) = σ2
∑
j

ψj+hψj

Proof. By bilinearity:

Cov (Xt+h, Xt) = Cov

∑
j

ψjZt−j+h,
∑
i

ψiZt−i


=
∑
j

∑
i

ψjψiCov (Zt+h−jZt−i)

=
∑
j

∑
i

ψjψiγZ (h− j + i)

=
∑
l

∑
j

ψj+l+hψjγZ(l)

= σ2
∑
j

ψj+hψj <∞

by Cauchy-Schwartz inequality. In particular

γX(0) = σ2
∑
j

ψ2
j = E

∑
j

ψjZt−j

2 <∞.
Moreover, by dominated convergence, the series

∑
|j|≥k ψjZt−j converges absolutely in L2

and a.s. to Xt =
∑

j∈Z ψjZt−j that exists.

Reminder :
Let xt ≥ 0 for all t ∈ Z then the series

∑
t∈Z xt is always well defined in [0,+∞].

For xt ∈ R, if
∑

t∈Z |xt| < +∞, then
∑

t∈Z xt is well defined and the order of summation is
arbitrary. The series is said to converge absolutely. Thus, when xt ≥ 0 or

∑
t∈Z |xt| < +∞,∑

t∈Z xt is well defined as the limit of the sequence
(∑

|t|≤n xt

)
n∈N

.

1.2.3 Hilbert spaces, projection and the Wold theorem

It is natural to consider projections in the Hilbert space L2(P) when studying second order
stationary time series (Xt). Let (Ω,A,P) be a probability space.
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Definition. The set of all measurable functions f : Ω −→ R such that
∫
|f |2dP < +∞ is

denoted by L2(P).

Definition. The inner product associated to

||f || =

√∫
|f |2dP

is

〈f1, f2〉 =

∫
f1f2dP

Proposition. 〈·, ·〉 has the following properties:

• Bilinearity: 〈αf1, βf2〉 = αβ〈f1, f2〉

• Symmetric: 〈f2, f1〉 = 〈f1, f2〉

• Non-negative: 〈f, f〉 ≥ 0 and 〈f, f〉 = 0 iff f = 0 a.s.

• || · || is a seminorm: ||f1 + f2|| ≤ ||f1||+ ||f2|| and ||αf || = |α| ||f ||.

Definition. We denote by L2(P) the quotient space L2(P)/ ∼ with f ∼ g iff f = g a.s.

Proposition.
(
L2(P), || · ||

)
is a Hilbert space.

Exercise.

• Cauchy-Schwarz: for any f, g ∈ L2(P), | < f, g > | ≤ ‖f‖‖g‖,

• Show the triangular inequality ‖f + g‖ ≤ ‖f‖+ ‖g‖.

Definition. Any f, g ∈ L2(P) are orthogonal if < f, g >= 0 and are denoted f ⊥ g. Two
subsets F and G are orthogonal if f ⊥ g for any f ∈ F and g ∈ G.

Theorem (Projection). Let L be a linear sub-space closed in L2(P). Then for any f ∈
L2(P) the minimizer of g ∈ L→ ‖f−g‖2 exists, is unique and is denoted PL(f). Moreover
PL(f) ∈ L and f − PL(f) ⊥ L and these 2 relations characterize completely PL(f), the
projection of f onto L.

Notice that by orthogonality we have the Pythagorean theorem: for g ∈ L

‖f − g‖2 = ‖f − PL(f)‖2 + ‖PL(f)− g‖2.

The Projection theorem has nice probabilistic interpretations. For P being the dis-
tribution of the WN (Zt), we identify the measurable functions f ∈ L2(P) with the r.v.
X such that P(X ∈ A) = P(f−1(A)) for any A ∈ A. Moreover < X,Y >= E[XY ] and
so < X,Y >= Cov(X,Y ) if X and Y are centered. Thus, being orthogonal means being
uncorrelated.

Let A0 be a sub-σ algebra of A and let L be the set of r.v. that are A0-measurable
and square integrable. Then L is closed and

Definition. The projection PL(X) is called the conditional expectation of X on A0 and
is denoted PL(X) = E[X | A0].

When A0 is the σ algebra generated by some r.v. Y then we also write E[X | A0] =
E[X | Y ]. By the Theorem on the projection, we have that E[X | Y ] is square integrable
and that E[Xh(Y )] = 0 for any measurable and square integrable function h.

Definition. The projection PL(X) is called the conditional expectation of X on A0 and
is denoted PL(X) = E[X | A0].
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1.2.4 Best linear prediction

Let X1, . . . , Xn be the n first observations of a second order stationary time series (Xt)
that is centered.

Definition. The best prediction at time n is Pn(Xn+1) = E[Xn+1 | Xn, . . . X1]. It is the
measurable function f of the observation minimizing the quadratic risk (of prediction)
Rn+1 = E[(Xn+1 − f(Xn, . . . , X1))2].

One can also think of the projection on the closed subset L consisting in all linear
combinations of X1, . . . , Xn called the span of the observations. One always has L ⊂
σ(X1, . . . , Xn) and we define

Definition. The best linear prediction at time n is Πn(Xn+1) = PL(Xn+1). It is the
linear function f of the observation minimizing the quadratic risk (of prediction) RLn+1 =
E[(Xn+1 − f(Xn, . . . , X1))2].

By definition, one has RLn+1 ≥ Rn+1 and RLn ≥ RLn+1 because of the second order
stationarity and the linearity of f

RLn = E[(Xn+1 − f(Xn, . . . , X2))2].

Thus (RLn) is a converging sequence with non-negative limit denoted RL∞. Moreover
Πn(Xn+1) = θ1Xn + · · · + θnX1 and Cov(Xn+1 − Πn(Xn+1), Xk) = 0 for all 1 ≤ k ≤ n.
Actually, the two last properties completely determine the best linear prediction. We can
write down these equations in the matrix form, dividing by γX(0):

Definition. The system of n equations on the covariances constitute defining the coeffi-
cients of the best linear prediction is called the Yule-Walker system and it is equal to

(ρX(h))1≤h≤n = (ρX(i− j))1≤i,j≤nθ.

The equations of prediction are equivalent to the Yule-Walker system ρX(0) · · · ρX(n− 1)
...

. . .
...

ρX(n− 1) · · · ρX(0)


θ1

...
θn

 =

ρX(1)
...

ρX(n)


Thus one can write in a compact way with X = (X1, . . . , Xn)′

Πn(Xn+1) = θ′X = E[XX′]−1E[XXn+1]X.

The Yule-Walker method is based on the compact formula, requiring to invert a covariance
matrix at each step n. Other procedures can compute this explicit formula in an efficient
way, i.e. avoiding to invert the covariance matrix of the observations (X1, . . . , Xn)′.

The matrix of variance-covariance of the observation (ρX(i − j))1≤i,j≤n is a Toeplitz
symmetric semi-definite matrix with diagonal dominant with diagonal terms 1. It is not
definite only if it exists a deterministic vector u 6= 0 in its kernel such that

0 = u>(γX(i− j))1≤i,j≤nu = E[u>XX>u] = E[(u>X)2] = 0,

where X = (X1, . . . , Xn)>. Thus u>X = 0 a.s. and Xn expresses as a linear combination
of the past values X1, . . . , Xn−1. In particular Πn−1(Xn) = Xn a.s. and RLn+k = 0 for

all k ≥ 0. More generally, in any cases where RL∞ = 0 one says that the second order
stationary time series (Xt) is deterministic. For instance rt = X for all t ∈ Z, where
X is a random variable, is deterministic. There are other example of deterministic (but
random) time series:
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Example. Let A and B two random variables such that Var (A) = Var (B) = σ2, E(A) =
E(B) = 0 and Cov(A,B) = 0. Let λ ∈ R. We define the following trigonometric sequence:

Xt = A cos(λt) +B sin(λt)

Then (Xt) is weak-sense stationary as µX = E(Xt) = 0 and

γX(h) = Cov (Xt, Xt+h)

= Cov [A cos (λt) +B sin (λt) , A cos (λ(t+ h)) +B sin (λ(t+ h))]

= cos (λt) cos (λ(t+ h))σ2 + sin (λt) sin (λ(t+ h))σ2

= σ2 cos(λh)

Although A and B are random variables, the process (Xt) is deterministic.

1.2.5 The innovations and the Wold theorem

Let us introduce the following notion

Definition. The innovation at time n is the error of linear prediction In = Xn−Πn−1(Xn).

So, by definition the innovations are centered and their variances are equal to RLn . In
general, the innovations are not stationary as RLn decreases with n. We have the following
simple decomposition

Proposition. The linear projection Πn+1 can be decomposed into the sum of two projection

Πn+1 = Πn + PIn+1 , n ≥ 1,

where PIn+1 is the projection on the linear span of the innovation In+1.

Proof. The proof is based on the orthogonal decomposition of Ln+1 the linear span of
(X1, . . . , Xn+1) as the linear span Ln of (X1, . . . , Xn) and the linear span of In+1. Indeed,
by definition of In+1 ∈ Ln+1 we have In+1 ⊥ Ln. We conclude by a dimension argument,
as the dimension of Ln+1 is n + 1 and so the orthogonal complement of Ln of dimension
n is a span of dimension 1.

In particular the innovations (In) are uncorrelated.
Let us describe the asymptotic behaviour of the innovations. To do so, it is useful to

use a backward argument; one observes (X−1, . . . , X−n) and we try to predict X0 for all
n ≥ 1. We denote Π−n(X0) the corresponding best linear prediction. By second order
stationarity, we have

RLn = E[(X0 −Π−n(X0))2], n ≥ 1.

Moreover X0 − Π−n(X0) is orthogonal to the span of (X−1, . . . , X−n). By orthogonality
of Π−n+k(X0) and Πn(X0) with Πn(X0)−X0 for 1 ≥ k ≥ n we have

E[(P−n+k(X0)−Π−n(X0))2] = RLn−k +RLn + 2E[(Π−n+k(X0)−X0)(Π−n(X0)−X0)]

= RLn−k +RLn − 2E[X0(Π−n(X0)−X0)]

= RLn−k −RLn .

Thus as (RLn) is converging, it is a Cauchy sequence and so is (Π−n(X0)) in L2(P). Thus
Π−n(X0) converges and one denotes Π∞(X0) its limit. Defining I∞(X0) = X0 −Π∞(X0),
we have the identity

RL∞ = E[I∞(X0)2].
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Defining Π∞(Xn) and I∞(Xn) thanks to the lag operator LnΠ∞(Xn) = Π∞(X0), one can
also check that

E[(In − I∞(Xn))2] = E[(Πn−1(Xn)−Π∞(Xn))2] = RLn −RL∞ → 0.

In particular (In − I∞(Xn)) converges in L2 to 0 and (In) converges in distribution to
I∞(X0). Let us use this concept of limit innovation I∞(Xn) in order to prove that any
second order stationary time series (Xt) is the sum of a linear time series and a determin-
istic process:

Theorem (Wold). Let (Xt) be second order stationary. Then Xt is uniquely decompose
as

Xt =
∑
j≥0

ψjI∞(Xt−j) + rt

where

• ψ0 = 1 and
∑

j≥0 ψ
2
j <∞,

• (I∞(Xt−j)) is a WN(RL∞),

• Cov(Zt, rs) = 0 for all t, s ∈ Z.

• (rt) is the deterministic component in the sense that

E[rt | Xt−1, Xt−2, . . .] = rt, t ∈ Z,

Proof. Let us show the 2 first assertions. By construction (I∞(Xt) is a WN(RL∞). Let
define

ψj =
E[XtI∞(Xt−j)]

RL∞
.

Then ψ0 = 1 and
∑

j≥0 ψjI∞(Xt−j) is the orthogonal projection of Xt on the span of
(I∞(Xt−j))j≥0 by the use of the previous Proposition and a recursive argument. Thus
E[(
∑

j≥0 ψjI∞(Xt−j))
2] =

∑
j≥0 ψ

2
j <∞.

The Wolds’s representation motivates the following definition

Definition. The linear time series is causal iff ψj = 0, j < 0.

Remark that from Wold’s representation, any second order stationary time series that
has no deterministic component admits a causal linear representation.



Part II

Models and estimation
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Chapter 2
ARMA models

Assume that after pre-processing the data one obtains (Xt) that are second order sta-
tionary without deterministic component: by Wold’s representation, (Xt) admits a causal
linear representation

Xt =
∑
j≥0

ψjZt−j , t ≥ 1,

where (Zt) is some WN(σ2) and
∑

j ψ
2
j <∞. This linear setting motivates the use of the

best linear prediction

Πn(Xn+1) = θ1Xn + · · ·+ θnX1

as the associated error of prediction In+1 = Xn+1 − Πn(Xn+1) converges in distribution
to Z0 that we identify with I∞(X0). As the best linear prediction of a WN is 0, the
WN is considered as linearly unpredictable and σ2 = RL∞ is the smallest poxssible risk of
prediction in our context.

However, it is not reasonable to try to estimate n coefficients from n observations
(X1, . . . , Xn) as θ = (θ1, . . . , θn) requires the knowledge of (ρX(h))0≤h≤n through the
Yule-Walker equation, and these correlations are unknown. Usually, one estimate the
autocorrelations empirically:

Definition. The empirical autocorrelation is defined as

ρ̂X(h) =

∑n−h
t=1 XtXt+h∑n

t=1X
2
t

, 0 ≤ h ≤ n− 1.

Notice that by definition, we have the following properties

• |ρ̂X(h)| ≥ 1 for the same reason than |ρX(h)| ≥ 1: Cauchy-Schwartz inequality,

• ρ̂X(h) is certainly biased, i.e. E[ρ̂X(h)] 6= ρX(h).

In practice, one would like to test wether ρX(h) = 0 from the estimator ρ̂X(h). It is
possible under the strong assumption, uncheckable, that (Xt) is a SWN.

Theorem. If (Xt) is a SWN then ρ̂X(h) converges (a.s) to ρX(h) if h is fixed and n→∞
and in this case, for any h ≥ 1, we have

√
nρ̂X(h)

d.−→ N (0, 1).

17
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Proof. We want to apply the CLT on (XtXt+h). It has finite variance γX(0)2 because of
the independence assumption. Also (XtXt+h) is independent of (XsXs+h), s > t, except
for s = t+ h but then

Cov(XtXt+h, Xt+hXt+2h) = E[XtX
2
t+hXt+2h] = 0.

Thus one can prove that
√
nγ̂X(h)

d.−→ N (0, γX(0)2)

where γ̂X(h) = (n−h)−1
∑n−h

t=1 XtXt+h is the unbiased empirical estimator of γX(h). The
result also holds for h = 0:

√
n(γ̂X(0)− γX(0))

d.−→ N (0, γX(0)2)

which implies that γ̂X(0)
P.−→ γX(0). We conclude the proof applying Slutsky’s theorem.

The blue dotted band observed in Figure 1.2.1 corresponds to the interval ±1.96/
√
n.

If the coefficient γ̂X(h) is outside the band, one can reject with asymptotic confidence rate
95% the hypothesis that (Xt) is a strong white noise. The asymptotic is reasonable when
n− h is large because the correct normalisation should be

√
n− h in the result above and

not
√
n (asymptotically equivalent when h is fixed). On the contrary, there does not exists

any converging estimator of ρX(n − h) for any h fixed, even when n tends to infinity. (a
fortiori ρX(n) as we never observed data delayed by n).

As it is unrealistic to estimate n parameters from n observations, we will use a sparse
representation of the linear process (Xt):

Definition. An ARMA(p,q) time series is a solution (if it exists) of the model

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + γ1Zt−1 + · · ·+ γqZt−q, t ∈ Z,

with θ = (φ1, . . . , φp, γ1, . . . , γq)
′ ∈ Rp+q the parameters of the model and (Zt) WN(σ2).

2.1 Moving Averages (MA time series)

The moving average is the simplest sparse representation of the infinite series in the causal
representation Xt =

∑
j≥0 ψjZt−j consisting in assuming ψj = 0 for j ≥ q.

Definition. A MA(q), q ∈ N ∪ {∞} process is a solution to the equation:

Xt = Zt + γ1Zt−1 + · · ·+ γqZt−q, t ∈ Z.

Notice that we extend the notion to the cases where q = ∞ so that any causal linear
time series satisfies MA(∞) model

Example. Let (Zt) be a WN(σ2) and let γ ∈ R. Then Xt = Zt + γZt−1 is a first order
moving average, denoted as MA(1). (Xt) is second order stationary because E (Xt) = 0
and

γX(h) = Cov (Zt + γZt−1, Zt+h + γZt+h−1) =


(1 + γ)2σ2 if h = 0,

γσ2 if h = 1,

0 else.

In general, we have the following very useful property
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Figure 2.1: A trajectory and the corresponding ACF of the solution of an MA(1) model

Proposition. If (Xt) is a MA(q) time series, we have γX(h) = 0 for all h ≥ q.

Remark.

• Xt and Xs are uncorrelated as soon as |t− s| ≥ 2.

• If Zt is a SWN(σ2), then (Xt) is stationary. Moreover Xt and Xs are independent
as soon as |t− s| ≥ 2 and we say that (Xt) is a 1-dependent time series.

• More generally, a MA(q) model is a q-dependent stationary time series when (Zt) is
SNW.

Exercise. Show that (Xt) is stationary as soon as (Zt) is.

As shown in Figure 2.1, the uncorrelated property is used in practice to estimate the
order q of an MA(q); corresponding to the last component which is significantly non-null,
i.e. outside the blue confident band (only valid if (Zt) is a SWN).

2.2 Auto-Regressive models (AR time series)

The second sparse representation is the AR(p).

Definition. The time series (Xt) satisfies an AR(p), p ∈ N ∪ {∞}, iff it is solution of the
equation

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt, t ∈ Z.

It is not sure that it represents a causal linear time series.

Example. Let (Zt) be a SWN(σ2) and Xt = φXt−1 + Zt, for t ∈ Z (AR(1) process). As
we have no initial condition the recurrence equation does not ensure the existence of (Xt).
If |φ| < 1, then by iterating the equation we get:

Xt = φkXt−k + φk−1Zt−k−1 + · · ·+ φZt−1 + Zt

If a second order stationary solution (Xt) exists, then:

E
[(
φkXt−k

)2
]

= φ2kE
[
X2

0

]
−→
k→+∞

0
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Figure 2.2: A trajectory and the corresponding ACF of the solution of an AR(1) model

A solution admits a MA(∞) representation:

Xt =

+∞∑
j=0

φjZt−j

which exists as
∑+∞

j=0 |φj |2 <∞ We shall prove that this representation is well defined for

non strong WN (Zt). Remark that γX(0) = σ2/(1− φ2) and that ρX(h) = φh, h ≥ 0.

We saw that for a MA(1) process, γX(h) = 0 for h ≥ 2. Here we still have γX(h) 6=
0 ∀h ≥ 0. Thus, it is not possible to use the ACF to infer the order p of a AR(p) model.

The notion used for asserting the order of auto-regression is the partial autocorrelation
that uses the innovations

Definition. The partial autocorrelation of order h is defined as (under the convention
Π0(X1) = 0)

ρ̃X(h) = ρX(X0 −Πh−1(X0), Xh −Πh−1(Xh)), h ≥ 1

where Πh−1(X0) is the projection of X0 on the linear span of (X1, . . . , Xh−1) (null for any
causal time series).

By definition ρ̃X(1) = ρX(1). Notice that for any causal time series we Πh−1(X0) = 0
so that

ρ̃X(h) = ρX(X0, Ih), h ≥ 1.

The partial autocorrelations are used to determine graphically the order of an AR(p)
model. Indeed, we have

Proposition. The PACF of an AR(p) time series satisfies ρ̃X(h) = 0 for all h > p

Proof. Indeed, for an AR(p) time series we have Πh−1(X0) = 0 and Πh−1(Xh) = φ1Xh−1 +
· · ·+ φpXh−p so that

ρ̃X(h) = ρX(X0, Zh) = 0, h > p.

Fortunately, the PACF can be estimated from the Yule-Walker equation using only the
h first empirical estimators of the correlations ρ̂X(i) for 1 ≤ i ≤ h.
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Remark. If φ = 1, by iterating we get the random walk Xt = X0 + Z1 + · · · + Zt and
Var (Xt − X0) = tσ2 −→

t→+∞
+∞. Let’s assume that (Xt) is weak-sense stationary. Then

by Minkowsky inequality:√
Var (Xt −X0) ≤

√
Var (Xt) +

√
Var (X0) = 2

√
Var (X0)

This is a contradiction. So the random walk is not weak-sense stationary. This course is
restricted to the stationary case.

Exercise.

• Show that if |φ| > 1, the equation Xt = φXt−1 + Zt admits a unique second order
stationary solution of the form Xt = −

∑+∞
j=1 φ

−jZt+j . It is a linear time series that
is not causal.

• Show that if φ = −1, there is no stationary solution.

However, (Xt) is said to be (short memory) weakly dependent in both cases because
|γX(h)| −→

k→+∞
0 and the decrease is exponential:

∃c > 0, ρ ∈ ]0, 1[ , ∀h ∈ N, |γX(h)| < cρh

There are long memory processes (or strongly dependent): |γX(h)| ∼ h−a, a > 1/2.

2.3 Existence of a causal second order stationary solution
of an ARMA model

As for the AR(1) model, some conditions have to be done on the coefficients of the au-
toregressive part such that the solution can be written as a linear filter

Xt =
∑
j

ψjZt−j , t ∈ Z.

Recall that L defines the backward shift operator such that L((Xt)) = (Xt−1) and Lk(Xt) =
Xt−k. One can now rewrite the ARMA model in a compact form

φ(L)Xt = γ(L)Zt, t ∈ Z

where (Zt) is a WN(σ2) and

φ(x) = 1− φ1x− · · · − φpxp,
γ(x) = 1 + γ1x+ · · ·+ γpx

p, x ∈ R.

We need to use complex analysis to solve the equation φ(L)Xt = γ(L)Zt as Xt =
φ−1(L)γ(L)Zt = ψ(L)Zt.

Definition. A Laurent series is a function C 7→ C that can be written as ψ(z) =
∑
ψjz

j

where the range of the summation is j ∈ Z.

If
∑
|ψj | < ∞, as suptE|Zt| ≤ σ < ∞ then ψ(L)Zt exists a.s. and in L1. Thus, the

behavior of the Laurent series on S = {z ∈ C, |z| = 1} is crucial for the analysis of the
existence of a filter.
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Figure 2.3: A trajectory and the corresponding ACF of the solution of an ARMA(1,1)
model with φ1 = γ1 = 0.9.

Proposition. Assume that
∑
|ψ1,j | <∞ and

∑
|ψ2,j | <∞.

1. the series ψi(z) =
∑

j∈Z ψi,jz
j are well defined on S,

2. ψ1(z)ψ2(z) = ψ2(z)ψ1(z) =
∑

k∈Z
∑

j∈Z ψ1,jψ2,k−jz
k is well defined on S.

We are now ready to state

Theorem. If φ do not have roots on S then the ARMA model admits a solution Xt =
φ−1(L)γ(T )Zt = ψ(T )Zt, t ∈ Z and (Xt) is a causal linear time sereies.

Recall the notion of causality, meaning here that the process (Xt) is a linear transfor-
mation of the past (Zt, Zt−1, . . .). Here, it is equivalent to assert that ψj = 0 for j < 0
and so that the Laurent series is holomorphic on D = {z ∈ C, |z| ≤ 1} as its Taylor rep-
resentation exists on S and so also for smaller |z|. As ψ(z) = φ−1(z)γ(z), it means that φ
does not have roots inside D. So we have the following result

Proposition. The solution of an ARMA model is

1. causal if φ does not have roots inside D,

2. (linearly) invertible, i.e. ϕ(L)Xt =
∑∞

j=0 ϕjXt−j = Zt if γ does not have roots inside
D.

The second assertion holds for the same reason than the first one as ϕ(z) = γ−1(z)φ(z).
Moreover, from Cauchy’s integral theorem on holomorphic functions defined on some ex-
tension of the unit disc, we also have

Proposition. If the ARMA model is causal or invertible then there exists C > 0 and
0, ρ < 1 so that |ψj | ≤ Cρj or |ϕj | ≤ Cρj, respectively.

In particular, an ARMA process is a sparse representation of a linear model that models
only exponential decaying auto-covariance processes because γX(h) = σ2

∑∞
j=0 ψjψj+h =

O(ρj).

Example. Any ARMA(p, q) will have auto-correlations that will ultimately decrease to 0
exponentially fast.
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Figure 2.4: A trajectory and the corresponding ACF of the solution of an ARMA(1,1)
model with −φ1 = γ1 = 0.9

Notice that the ARMA(p, q) representation faces the following problem of sparsity,
when pq 6= 0; if there is a common root for the two polynomials φ and γ, let us say z0

with |z0| 6= 1, then (z0 − L) is inveritble and the ARMA(p− 1, q − 1) model

(1− z−1
0 L)−1φ(L)Xt = (1− z−1

0 L)−1γ(L)Zt

defines the same linear time series than the original ARMA(p, q) model. This problem is
even more crucial than the ACF or the PACF do not yield any information on how to
choose the orders p and q.

Example. An ARMA(1, 1) with φ1 = −γ1 is equivalent to a WN. To see this, one checks
that the root of the polynomial φ(z) = 1−φ1z is the same than the root of γ(z) = 1+γ1z.

To solve this issue, one uses penalized Quasi Maximum Likelihood approach.
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Chapter 3
Quasi Maximum Likelihood for ARMA
models

The estimation of the parameter θ = (φ1, . . . , φp, γ1, . . . , γq) ∈ Rp+q will be done following
the Maximum Likelihood principle. The important concept is the likelihood, i.e. the
density of the fθ of the sample (X1(θ), . . . , Xn(θ)) that follows the ARMA(p, q) model
with the corresponding θ ∈ Rp+q.

Definition. The log-likelihood Ln(θ) is defined as

Ln(θ) = −2 log(fθ(X1, . . . , Xn)).

The Quasi-Likelihood criterion (QLik) is the log-likelihood when (Zt(θ)), the noise of the
model (X1(θ), . . . , Xn(θ)), is gaussian WN(σ2). The Quasi Maximum Likelihood Estima-
tor (QMLE) satisfies

θ̂n = arg min
θ∈Θ

Ln(θ),

for some admissible parameter region Θ ⊂ Rp+q.

The concept of QLik is fundamental in these notes. As we will see, the gaussian
assumption on (Zt) is made only for calculating the criterion. It is not the Likelihood,
i.e. we do not want to believe that the observations (Xt) satisfies the ARMA(p, q) model.
Notice that we do not consider the variance of the noise of the model σ2 as an unknown
parameter. The procedure will automatically provide an estimator of this variance, as a
deterministic function of the QMLE θ̂n.

3.1 The QML Estimator

3.1.1 Gaussian distribution

Definition. A random variableN is gaussian standard if its density is equal to (2π)−1/2ex
2/2,

x ∈ R. We will denote the distribution N (0, 1).

Then X is symmetric, E[X] = 0 and Var (X) = 1.

Definition. A random variable X ∼ N (µ, σ2), µ ∈ R and σ > 0, if there exists N ∼
N (0, 1) such that X = µ+ σN in distribution.

25
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Then E[X] = µ and Var (X) = σ2 and

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R.

Definition. Let Xk ∼ N (0, 1), 1 ≤ k ≤ n, be iid. Then, for any U ∈ Rn, any Σ a n × n
symmetric matrix definite positive, the vector

Y = U + Σ1/2(X1, . . . , Xn)′ in distribution

is distributed as Nd(U,Σ), the gaussian distribution of dimension d with mean U and
variance Σ.

Notice that Σ1/2 is the square root of Σ, i.e. the only symmetric definite positive
matrix A such that A2 = Σ. The fundamental result about gaussian random vector is the
following

Proposition. Let Y be a d-dimensional Gaussian random vector that is centered then
E[YiYj ] = 0, i.e. Yi ⊥ Yj for i 6= j is equivalent to Yi independent of Yj.

The proof is based on a characteristic functions argument. That Yi and Yj are gaus-
sian centered r.v. is not enough, consider the case Yi = εYj with P(ε = ±1) = 2−1 and ε
independent of Yj .

The proposition has several consequences. In particular, one can deduce that for
centered observations X1, . . . , Xn constituting a gaussian vector then Pj = Πj , i.e. the
conditional expectation is equal to the orthogonal projection.

3.1.2 The QLik loss

The Quasi-Likelihood loss for an ARMA model is computed in the following way. Consider
the parameter θ of an ARMA(p, q) as fixed. One wants to compute the density of the model
(X1(θ), . . . , Xn(θ)) that are not independent random variables. Thus, the density is not a
priori a product. However, one always has

fθ(x1, . . . , xn) =
n∏
t=1

fθ(xt | xt−1, . . . , x1)

where fθ(xt | xt−1, . . . , x1) is the density of the distribution ofXt(θ) givenXt−1(θ), . . . , X1(θ).
Under the gaussian assumption, we have

Proposition. If θ corresponds to a causal ARMA(p, q) model then the distribution of
Xt(θ) given Xt−1(θ), . . . , X1(θ) is

N (Πt−1(Xt(θ)), R
L
t (θ)), t ≥ 1

with the conventions Π0(Xt(θ)) = 0 and RLt (θ) = E[(Xt(θ)−Πt−1(Xt(θ)))
2].

Proof. From the causal assumption, (Xt(θ)) is a linear function of (Zt). Thus all the
distributions of (Xt+1(θ), . . . , Xt+h(θ)) for any t ∈ Z and h ≥ 1 are gaussian. one says
that (Xt(θ)) is a guassian process. Thus, the conditional distribution of Xt(θ) given
Xt−1(θ), . . . , X1(θ) is gaussian. One has to compute the conditional expectation and the
conditional variance. We already know that the conditional expectation coincides with
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the best linear predictor Πt−1(Xt(θ)). Moreover, we have that the corresponding error of
prediction Xt(θ) − Πt−1(Xt(θ)) is orthognal to the past (Xt+1(θ), . . . , Xt+h(θ)). Thus, it
is independent and the conditional variance

Var (Xt(θ) | Xt−1(θ), . . . , X1(θ)) = E[(Xt(θ)−Πt−1(Xt(θ)))
2 | Xt−1(θ), . . . , X1(θ)]

= E[(Xt(θ)−Πt−1(Xt(θ)))
2]

= RLt (θ).

By definition, Πt−1(Xt(θ)) is a linear function of the past Xt−1(θ), . . . , X1(θ) depending
only on θ. Let us denote by Πt−1(θ)(xt) the same function expresses on xt−1, . . . , x1. Then
the density of the model expresses as

fθ(x1, . . . , xn) =
n∏
t=1

1√
2πRLt (θ)

e−(xt−Πt−1(θ)(xt))2/RLt (θ).

The QLik criterion has the nice additive form, up to a constant

Ln(θ) =

n∑
t=1

log(RLt (θ)) +
(Xt −Πt−1(θ)(Xt))

2

RLt (θ)
+ cst.

In the sequel, we will denote for short the innovation of the ARMA model on the obser-
vatiosn as

It(θ) = Xt −Πt−1(θ)(Xt).

Minimizing this criterion over the set of any possible causal models Θ, we obtain the
QMLE.

3.1.3 The QMLE as an M-estimator

The QMLE is an estimator defined as the minimizer of the QLik. There is a vast litterature
on such class of estimators, called M-estimator.

Definition. An M -estimator is a parameter θ̂n satisfying

θ̂n ∈ arg min
Θ
Ln(θ) = arg min

Θ

n∑
t=1

`t(θ).

The (random) functions `t are called the contrast. The set of parameters ′Θ has to be
chosen carefully. One convenient (and safe) way is to choose it as a compact set so that
continuity of the contrast yields the existence of the M -estimator.

Avoiding the difficult problem of calculating efficiently (Πt(θ)) and (RLt (θ)) (i.e. as-
suming they are known), we obtain the asymptotic behavior

1

n
Ln(θ) =

1

n

n∑
t=1

log(fθ(Xt | Xt−1, . . . , X1))

≈ 1

n

n∑
t=1

log(fθ(Xt | Xt−1, Xt−2, . . .))

a.s.−−→ E[log(fθ(Xt | Xt−1, Xt−2, . . .))].
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Here some comments should be provided about these approximations.
The first approximation is valid as a Cesaro mean if

log(fθ(Xt | Xt−1, . . . , X1))− log(fθ(Xt | Xt−1, Xt−2, . . .))→ 0, t→∞.

As

log(fθ(Xt | Xt−1, . . . , X1)) = log(RLt (θ)) +
(Xt −Πt−1(θ)(Xt))

2

RLt (θ)
+ cst

the first term will converge by continuity as (RLt (θ)) is converging. The limit is

log(RLt (θ))→t→∞ log(RL∞(θ)).

For the second term, it depends on the convergence of (Πt−1(θ)(Xt)). We already know
that (Πt−1(θ)(Xt(Θ))) is converging. If θ corresponds to an invertible ARMA model, we
obtain that

Xt(θ) = −
∞∑
j=1

ϕjXt−j(θ) + Zt, t ∈ Z.

Thus, one can identify the best linear prediction (with infinite coefficients)

Π∞(θ)(Xt) = −
∞∑
j=1

ϕjXt−j(θ).

We also know that there exist C > 0 and 0 < ρ < 1 so that |ϕj | ≤ Cρj and then

E[(Πt−1(θ)(Xt)−Π∞(θ)(Xt))
2] = O(ρj)

for any second order stationary time series (Xt)
The second approximation is made thanks to a generalization of the SLLN called the

ergodic theorem.

3.1.4 Stationary ergodic time series

Stability in a stochastic setting refers to many notions. We remind here the main stability
notion: the ergodicity. Recall that T denotes the backward shift operator T ((Xt)) =
(Xt−1).

Definition. A set C of RZ is invariant iff T−1(C) = C and the stationary time series (Xt)
is ergodic iff for all invariant sets P((Xt) ∈ C) = 0 or P((Xt) ∈ C) = 1.

Ergodicity is a notion of stability because of the following theorem

Theorem (Birkhoff). If (Xt) is a strictly stationary and ergodic time series and f is a
measurable function such that E[|f((Xt))|] <∞ then:

1

n

n∑
i=1

f((Xi+t))→ E[f((Xt))] a.s.

In particular, it implies a generalization of the Strong Law of Large Numbers under
integrability

1

n

n∑
i=1

Xi → E[X0] a.s.
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Here the stability corresponds to the fact that averaging through time a constant function
of the observations converges to a constant.

In order to apply this powerful result, one needs to exhibit stationary and ergodic time
series.

Proposition. Let (Zt) be an iid sequence, then (Zt) is stationary and ergodic

It is a consequence of the zero-one law of Kolmogorov. From that basic result, it is
possible to construct other examples

Proposition. If h is a measurable function and if (Zt) is a stationary and ergodic sequence
then Xi = h((Zi+t)) constitutes a stationary ergodic sequence.

Thus, any linear filter of a SWN is a stationary ergodic time series when it exists. Thus
it is the case of any solution of an ARMA model. Sometimes, it is difficult to have an
explicit representation so we will use the following result from Straumann

Proposition. If (fn) is a sequence of measurable functions: fn : RZ → R such that
(fn(Zt, Zt−1, . . .)) converge a.s. for some t ∈ Z, then there exists measurable function f
such that

Xt = lim
n→∞

fn(Zt, Zt−1, . . .) = f(Zt, Zt−1, . . .), t ∈ Z

and (Xt) is stationary ergodic

The ergodicity implies a more general notion of stability than the stability for averaging
provided by the SLLN. Here we will average a function of the complete past (Xt) as required
in the applications:

Theorem (Kingman). Assume that there exists measurable functions gn, n ≥ 1 that are
subadditive, i.e.

gn+m((Xt)) ≤ gn((Xt)) + gm((Xt+n)), n,m ≥ 1

then if (Xt) is stationary and ergodic and g+
1 is integrable we have

gn((Xt))

n
→ inf

k≥1

E[gk((Xt))]

k
≥ −∞, a.s.

Notice that gn((Xt)) =
∑n

t=1 f(Xt) are subbadditive functions such that k−1E[gk((Xt))] =
E[f((Xt))] for all k by linearity. In general, by subadditivity, we always have k−1E[gk((Xt))] ≤
E[g1((Xt))]. An M -estimator is minimizing the cumulative losses also called the contrast.
Combining the Kingman theorem above and the definition of the M -estimator, one can
actually prove that the estimator is converging to θ0 the minimizer of the risk function
E[`0]. Denote x ∨ 0 = x−:

Theorem (Pfanzagl). Assume that (`t) is a stationary ergodic sequence of losses, that θ0

is the unique minimizer of E[`0] and that it exists ε > 0 small enough such that

E
[

inf
θ∈B(θ0,ε)

`−0 (θ)
]
> −∞

then θ̂n → θ0 a.s., i.e. the M -estimator of θ0 is strongly consistent.
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3.2 Strong consistency of the QMLE

3.2.1 Strong consistency of the QMLE

In the case of the QLik approach, when θ corresponds to a causal and invertible ARMA
model, one identifies the risk with the function

log(RL∞(θ)) + E

[
(X0 −Π∞(θ)(X0))2

RL∞(θ)

]
+ cst

Note that the corresponding contrast is

`t(θ) = log(RL∞(θ)) +
(Xt −Π∞(θ)(Xt))

2

RL∞(θ)
+ cst

which is an approximation of the log-likelihood of the distribution N (Πt(θ)(Xt), R
L
t (θ))

when θ corresponds to a causal and invertible ARMA(p, q) model. It is stationary, ergodic
and admits second order moments if (Xt) does. Applying Pfanzagl Theorem, we obtain

Proposition. If (Xt) is a stationary ergodic time series such that E[X2
0 ] <∞, if Θ corre-

sponds to non anticipative and invertible ARMA model, if there exists a unique minimizer
θ0 ∈ Θ of

θ 7→ log(RL∞(θ)) + E

[
(X0 −Π∞(θ)(X0))2

RL∞(θ)

]
(3.1)

then the QMLE θ̂n → θ0 a.s.

The last assumption depends on the parametrization of the model and on the assump-
tions on (Xt). If one assumes that the observations (Xt) follows themselves an ARMA
model with θ0 ∈ Θ, then θ0 is unique if the polynomials φ and γ for θ ∈ Θ do not have
common roots. Let us denote C ⊂ Rp+q the set of parameters corresponding to non antic-
ipative and invertible ARMA(p, q) models with no common roots. We have the following
strong consistency result

Theorem. If (Xt) satisfies an ARMA(p, q) model with θ0 ∈ C and (Zt) SWN(σ2), σ2 > 0,
then the QMLE is strongly consistent θ̂n → θ0 a.s.

Proof. The main difficulty is that C is an open set by definition. One should work on
its closure C̄ that is compact after excluding the points on the boundary ∂C as potential
minimizers, see Proposition 10.8.3.

The rest of the proof is an application of Pfazagl theorem as above. The ergodicity
and stationarity is ensured because fo the causal representation Xt =

∑
j≥0 ψjZt−j where

(Zt) is a SWN, thus iid and thus ergodic and stationery. The unicity of θ0 is derived from
the identity

E

[
(X0 −Π∞(θ)(X0))2

RL∞(θ)

]
= E

[
(Π∞(θ0)(X0)−Π∞(θ)(X0))2

RL∞(θ)

]
+

σ2

RL∞(θ)
,

obtained using X0 = Π∞(θ0)(X0) + Z0 and orthogonality. From strong convexity of the
quadratic risk, RL∞(θ) is minimized in θ0 only. Because x 7→ log(x) + x−1 is minimized in
a unique point 1 = RL∞(θ0)/σ2, then θ0 is the unique minimizer of the risk.
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3.2.2 Estimation of the variance of the noise

In practice, the variance of the WN σ2 > 0 is unknown. Thus RLt (θ) is not accessible.
However, one can check that it is equal to σ2rLt (θ) where now rLt (θ) corresponds to the
risk of linear prediction assuming that (Zt) is a gaussian (standardized) WN(1). As the
minimizer is derived from the nullity of the derivatives of the contrast, the M -estimator
defined assuming that (Zt) is a gaussian (standardized) WN(1) is still the QMLE θ̂n. From
Pfanzagl theorem we have also the convergence of the minimum of the QLik function, we
obtain

n∑
t=1

(X0 −Πt(θ̂n)(X0))2

σ2rLt (θ̂n)

a.s.−−→ 1.

We obtain

Proposition. If (Xt) satisfies an ARMA(p, q) model with θ0 ∈ C and (Zt) SWN(σ2),
σ2 > 0, then the QMLE provides a strongly consistent estimator of the variance σ2

σ̂2
n :=

1

n

n∑
t=1

(X0 −Πt(θ̂n)(X0))2

rLt (θ̂n)

a.s.−−→ σ2, n→∞,

where rLt (θ̂n) is the risk of linear prediction under standardization of the WN.

Remark. One considered Πt(θ) and rLt (θ) as known. It is actually one main crucial issue
to compute Πt(θ) and rLt (θ) efficiently, issue that will be solved later.

One can also show that rLt (θ̂n) → rL∞(θ0) = 1 a.s. for any θ0 ∈ C because of the
standardization. Substituting σ2 by its estimator in the QLik loss, we obtain

1

n

n∑
t=1

(
log(σ̂2

nr
L
t (θ̂n)) +

(Xt −Π(θ̂n)(Xt))
2

σ̂2
nr
L
t (θ̂n)

)
≈ log(σ̂2

n) + 1,

from the definition of σ̂2
n and as

1

n

n∑
t=1

log(rLt (θ̂n))
a.s.−−→ 0.

Notice that we cannot optimize the likelihood simultaneously on θ and σ2 as

Xt =
∑
j≥0

ψjZt−j =
∑
j≥0

(cψj)(c
−1Zt−j)

thus θ0 and σ2 are not uniquely determined.

3.2.3 Misspecification

Consider now that (Xt) is a centered stationary ergodic time series such that E[X2
0 ] <∞.

We do not assume anymore that (Xt) follows an ARMA(p, q) model. One studies the
asymptotic behaviour of the QMLE of the ARMA model with C ∈ Rp+q. Such cases are
called misspecification as the density used to build on the contrast is not the correct one.
They are very important as the aim is to obtain results that are satisfied even if the normal
assumption used to derive the QLik loss does not hold. In this context, Pfanzagl theorem
still holds and a careful look at the proof of the strong consistency show that it is still
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valid if one can decompose the second order term. Actually, one can always decompose
the second order stationary process (Xt) as

X0 = Π∞(X0) + I∞(X0)

where I∞(X0) is orthogonal to the span of the past values {X−1, X−2, . . .}. Thus we obtain

E

[
(X0 −Π∞(θ)(X0))2

RL∞(θ)

]
= E

[
(Π∞(X0)−Π∞(θ)(X0))2

RL∞(θ)

]
+

RL∞
RL∞(θ)

,

By the previous discussion, one can always consider first RL∞ > 0 as known and then
estimating it by standardizing the WN. Thus, we are left in the unicity of the minimizer
of the function

θ 7→ E[(Π∞(X0)−Π∞(θ)(X0))2] =: E

∑
j≥1

(ϕj − ϕj(θ))X−j

2 .
Developping this quantity, we find a function of uj = (ϕj − ϕj(θ)):∑

i≥0

∑
j≥0

uiγX(|j − i|)uj ∈ [0,∞].

As RL∞ > 0, there is now co-linearity in (Xj)j≤0 and the kernel of this function is restricted
to {0}. It is not hard to show that it is a (possibly infinite) norm on the space of square
integrable series. One can define a projection on any closed convex subset of this space,
in particular

ϕ(C̄) := {(ϕj(θ)); θ ∈ C̄}.

However, one has to check that the norm is not infinite over ϕ(C̄). We know that for each
elements of (uj) ∈ ϕ(C̄) there exist C > 0 and 0 < ρ < 1 so that |uj | ≤ Cρj . Thus, if∑

h≥0 |γX(h)| <∞ we have

∑
i≥0

∑
j≥0

uiγX(|j − i|)uj ≤ 2C2
∑
i≥0

ρi
∑
h≥0

|γX(h)|ρi+h ≤ 2C2
∑
i≥0

ρ2i

∑
h≥0 |γX(h)|

1− ρ
<∞.

Thus E[(Π∞(X0) − Π∞(θ)(X0))2] is minimized by the projection of the coefficients of
Π∞(X0) over ϕ(C̄). The coefficents (ϕj(θ)) are unique but not the corresponding value of
the parameters θ0 ∈ Θ0. Indeed, one cannot avoid the parameters θ0 ∈ ∂C, in partiular the
ones that correpond to polynomial with common roots. We say that a point y converges
to a set X when d(y,X ) = infx∈X ‖y − x‖ → 0. We obtain

Proposition. Consider a centered stationary ergodic time series (Xt) such that E[X2
0 ] <

∞, RL∞ > 0 and
∑

h≥0 |γX(h)| < ∞. Then the QMLE converges to the set Θ0 corre-
sponding to the coefficients ϕ(θ0) that uniquely determine the best linear prediction over
ϕ(C̄).

Example. Fitting an ARMA(1,1) one a SWN it is not possible to avoid the case of
common roots φ1 = −γ1 as shown by the following code from tsaEZ

> set.seed(8675309)

> x = rnorm(150, mean=5) # generate iid N(5,1)s

> arima(x, order=c(1,0,1)) # estimation
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Call:

arima(x = x, order = c(1, 0, 1))

Coefficients:

ar1 ma1 intercept

-0.9595 0.9527 5.0462

s.e. 0.1688 0.1750 0.0727

sigma^2 estimated as 0.7986: log likelihood = -195.98, aic = 399.96

As emphasised in the exemple above, the variance is also no longer consistently esti-
mated as the minimum of the risk E[`0] is no longer one, due to the extra aditive term
E[(Π∞(X0)−Π∞(θ)(X0))2] called the bias.

3.3 Asymptotic normality and model selection

3.3.1 Kullback-Leibler divergence

One can identify the risk E[`0] associated with the QLik loss with an important notion
from information theory that is a kind of distance between probability measures.

Definition. The Kullback-Leibler divergence (KL, relative entropy) between two proba-
bility measures P1 and P2 is defined as

K(P1, P2) = EP1 [log(dP1/dP2)].

The KL divergence has nice properties

Proposition. We have K(P1, P2) ≥ 0 and K(P1, P2) = 0 iff P1 = P2 a.s.

Assume that σ2 = RL∞ > 0 is unknown so that in the following rL∞(θ) is the standard-
ized linear prediction risk. One can identify, up to additive constants, the risk

E[`0(θ)] = log(σ2rL∞(θ)) +
E
[
(X0 −Π∞(θ)(X0))2

]
σ2rL∞(θ)

with twice the expectation of the KL divergence of

2E[K(PX0|X−1,X−2
,N (Π∞(θ)(X0), RL∞(θ)))]

where the expectation is taken over the distribution of the past (X−1, X−2, . . .) and the
KL divergence is understood conditional to this past.

Thus, if (Xt) follows an ARMA model with parameter θ0, we have that θ0 is the unique
minimizer of the risk E[`0] but also of the conditional risk

E[`0(θ) | X−1, X−2, . . .] = 2K(PX0|X−1,X−2
,N (Π∞(θ)(X0), RL∞(θ))).

3.3.2 Asymptotic normality of the MLE

Let us turn to the ML estimator

θ̂n ∈ arg min
Θ
Ln(θ) = arg min

Θ

n∑
t=1

`t(θ).
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where `t = −2 log(fθ(Xt | Xt−1, Xt−2, . . .)) consitutes a stationary sequence of contrast
such that θ0 is the unique minimizer of E[`0] on a compact set Θ ⊂ Rd, d ≥ 0 being the
dimension of the parametric estimation. We assume that the conditions of integrability
in Pfanzagl theorem are also satisfied so that θ̂n is strongly consistent. The asymptotic
normality of the QMLE follows in most of the cases under extra assumptions. If Ln is
sufficiently regular (2-times continuously differentiable) then a Taylor expansion gives

∂θLn(θ̂n) = ∂θLn(θ0) + ∂2
θLn(θ̃n)(θ̂n − θ0) (3.2)

with θ̃n ∈ [θ0, θ̂n]. Notice that as θ̂n is strongly convergent, then [θ0, θ̂n] → {θ0} a.s.

Moreover, if θ̂n ∈
◦
Θ the interior of the compact set then ∂θLn(θ̂n) = 0 as the QMLE is

the minimizer of the QLik contrast by assumption. So we have to study the properties of
the two first derivative of the contrast Ln. Let us first show that the two first derivatives
of Ln have nice properties at θ0:

Definition. The score vector is defined as the gradient of the QLik loss (up to constant)

St = ∇θ log(fθ(Xt | Xt−1, Xt−2, . . .)).

The Fisher’s information is I(θ0) = −E[∂2
θ log(fθ(Xt | Xt−1, Xt−2, . . .))].

We have the following property, deriving from the definition of θ0 as the unique min-
imizer of E[−2 log(fθ(Xt | Xt−1, Xt−2, . . .)) | Xt−1, Xt−2, . . .] from the discussion on the
KL divergence, we obtain

Proposition. If θ0 ∈
◦
Θ is the unique minimizer of the predictive power E[− log(fθ(Xt |

Xt−1, Xt−2, . . .)) | Xt−1, Xt−2, . . .] then the score vector is centered E[S0 | X−1, X−2, . . .] =
0 and I(θ0) is a symmetric definite positive matrix. If moreover the model is well-specified
so that f(Xt | Xt−1, Xt−2, . . .) = fθ0(Xt | Xt−1, Xt−2, . . .), then I(θ0) = Var (S0) and its
inverse is the smallest possible variance of unbiased estimator, called the Cramer-Rao
bound.

Proof. As θ0 is the minimizer of the predictive power in the interior of a compact set,
the derivative is null at this point. Thus the score is centered by differentiating under
the integral. Moreover, the Fisher information is definite otherwise the minimizer is not
unique.

Assume now that f(Xt | Xt−1, Xt−2, . . .) coincides with fθ0 = fθ0(X0 | X−1, X−2, . . .).
Then we have

0 = E[∇θ log(fθ0) | X−1, X−2, . . .] = E

[
∇θfθ0
fθ0

| X−1, X−2, . . .

]
=

∫
∇θfθ0 .

Assuming that one can differentiate under the sum, we then also have
∫
∂2
θfθ0 = 0. Simple

calculation yields

I(θ0) = E

[
∇θfθ0∇θf>θ0 − fθ0∂

2
θfθ0

f2
θ0

]
= E[S0S

>
0 ] = Var (S0).

The proof of the Cramer-Rao bound is classical.

The Fisher information is interpreted as the best possible asymptotic variance. We
obtain
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Theorem. If there exists θ ∈
◦
Θ which is the unique minimizer of the predictive power

E[− log(fθ(Xt | Xt−1, Xt−2, . . .)) | Xt−1, Xt−2, . . .], if the contrast `t = −2 log(fθ(Xt |
Xt−1, Xt−2, . . .)) is twice continuously differentiable and integrable, then the MLE is asymp-
totically normal

√
n(θ̂n − θ0)

d.−→ N (0, I(θ0)−1Var (S0)I(θ0)−1).

Moreover, it is asymptotically efficient, i.e. the asymptotic variance coincides with the
Cramer-Rao bound, when the model is well-specified.

Proof. The sequence of score vectors (St) constitutes a difference of martingale. The CLT
extends to such square integrable difference of martingales and we obtain

− 1√
n
∂θLn(θ0) = 2

1√
n

n∑
t=1

St
d.−→ N (0, 4Var (S0)).

One can also use the ergodic theorem and the strong consistency of θ̂n to obtain

1

n
∂2
θLn(θ̃n) = −2

1

n

n∑
t=1

∂2
θ log(fθ̃n(Xt | Xt−1, Xt−2, . . .))

a.s.−−→ 2I(θ0).

Thus, starting from the identity (3.2), we obtain

0 = ∂θLn(θ0) + ∂2
θLn(θ̃n)(θ̂n − θ0)

⇔ −∂θLn(θ0) = ∂2
θLn(θ̃n)(θ̂n − θ0)

⇔ − 1√
n
∂θLn(θ0) =

1

n
∂2
θLn(θ̃n)

√
n(θ̂n − θ0).

The LHS of the last identity converges in distribution to N (0, 4Var (S0)), the RHS is a.s.
equivalent to 2I(θ0)

√
n(θ̂n − θ0) so that the desired result is obtained.

3.3.3 Asymptotic normality of the QMLE

As θ0 was uniquely determined in Theorem 3.2.1, as C is an open set so that θ0 ∈
◦
C, we

immediately obtain the asymptotic normality of the QMLE:

Theorem (Hannan). If (Xt) satisfies an ARMA(p, q) model with θ0 ∈ C and (Zt) SWN(σ2),
σ2 > 0, then the QMLE is asymptotically normal

√
n(θ̂n − θ0)

d.−→ Np+q
(
0,Var (ARp, . . . , AR1,MAq, . . . ,MA1)−1

)
where (ARt) and (MAt) are the stationary AR(p) and AR(q) time series driven by the
coefficient θ0, the same SWN(1) (ηt) and satisfying

φ(T )ARt = ηt, γ(T )MAt = ηt, t ∈ Z.

Proof. One first check the differentiability and integrability conditions on the QLik con-
trast

`t(θ) = log(σ2rL∞(θ)) +
(Xt −Π∞(θ)(Xt))

2

σ2rL∞(θ)
.

The score is defined as

St = −∇θr
L
∞(θ0)

2rL∞(θ0)
+

(Xt −Π∞(θ0)(Xt))

σ2rL∞(θ0)
∇θΠ∞(θ0)(Xt) +

(Xt −Π∞(θ0)(Xt))
2

2σ2rL∞(θ0)2
∇θrL∞(θ0).
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From the identities rL∞(θ0) = 1, ∇θrL∞(θ0) = 0 (because θ0 minimizes the function rL∞)
and Xt −Π∞(θ0)(Xt) = Zt we obtain the expression

St =
Zt
σ2
∇θΠ∞(θ0)(Xt).

One checks easily that E[S0 | Xt−1, Xt−2, . . .] = 0 as expected. Its variance is

Var (S0) =
1

σ2
E[∇θΠ∞(θ0)(Xt)∇θΠ∞(θ0)(Xt)

>]

Similarly, one computes the Fisher information

I(θ0) =
1

σ2
E[∇θΠ∞(θ0)(Xt)∇θΠ∞(θ0)(Xt)

> − Zt∂2
θΠ∞(θ0)(Xt)]

=
1

σ2
E[∇θΠ∞(θ0)(Xt)∇θΠ∞(θ0)(Xt)

>].

As Π∞(θ0)(Xt) = Xt − γ−1(L)φ(L)Xt we have that

∂φkΠ∞(θ0)(Xt) = −γ−1(L)LkXt = −φ−1(L)Zt−k = −σARt−k.

Similarly, we have

∂γkγ
−1(L) = −∂γkγ(L)γ(L)−2 = −Lkγ(L)−2

so that

∂γkΠ∞(θ0)(Xt) = −Lkγ(L)−2φ(L)Xt = −γ−1(L)Zt−k = −σMAt−k.

The desired result follows.

From the proof, we have an alternative expression for the asymptotic variance

σ2E[∇θΠ∞(θ0)(Xt)∇θΠ∞(θ0)(Xt)
>]−1.

Notice also that we have the identity I(θ0) = Var (S0) and that the QMLE is efficient as
soon as (Zt) is gaussian WN. Notice that the asymptotic variance of θ̂n does not depend on
σ2. It complements the fact that θ and σ2 can be estimated separately in ARMA models.
Finally notice that the asymptotic variance can be estimated by computing the covari-
ances of (ARt) and (MAt) driven by the QMLE θ̂n (actually one can compute explicitly
Var (ARp, . . . , AR1,MAq, . . . ,MA1)−1 in term of the coefficients θ of the polynomial of
(ARt) and (MAt) or one can use numerical approximations).

3.3.4 Asymptotic properties of the predictions

Notice that when σ2 is unknown, we have the QLik loss

1

n

n∑
t=1

(
log(σ̂2

nr
L
t (θ̂n)) +

(Xt −Πt−1(θ̂n)(Xt))
2

σ̂2
nr
L
t (θ̂n)

)
≈ log

(
1

n

n∑
t=1

(Xt −Π∞(θ̂n)(Xt))
2

)
+ 1,

as, under
∑

h≥0 |γX(h)| < ∞, the error of approximation of Π∞(θ̂n)(Xt) by Π∞(θ̂n)(Xt)

is exponentially decreasing with t in L2. Thus, the QMLE is equivalent to an ordinary
least square estimator over an infinite number of explanatory variables (the whole past)
under a constraint on the shape of the coefficients (the parameters are represented by an
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ARMA(p, q) equation). However, in misspecified cases, the uniqueness of θ0 is not ensured
and the asymptotic normality result is not possible in full generality.

However, as (Π(θ̂n)(Xt)) is the unique minimizer, the derivatives in ϕ at this point are
null and

2

n∑
t=1

(Xt −Π∞(θ̂n)(Xt))Π∞(θ)(Xt) ≈ 0, θ ∈ C.

By the remarkable identity, we then have

n∑
t=1

(Xt −Π∞(θ̂n)(Xt))
2 ≈

n∑
t=1

(Xt −Π∞(θ0)(Xt))
2 −

n∑
t=1

(Π∞(θ0)(Xt)−Π∞(θ̂n)(Xt))
2.

If the uniqueness of θ0 is likely (i.e. the QMLE converges in C), the asymptotic normality
follows and we can apply the Delta-method on the last term

n∑
t=1

(Π∞(θ0)(Xt)−Π∞(θ̂n)(Xt))
2 ≈

n∑
t=1

(∇θΠ∞(θ0)(Xt)
>(θ̂n − θ0))2

≈
n∑
t=1

∇θΠ∞(θ0)>(Xt)(θ̂n − θ0)(θ̂n − θ0)>∇θΠ∞(θ0)(Xt)

≈
n∑
t=1

Tr(∇θΠ∞(θ0)(Xt)∇θΠ∞(θ0)(Xt)
>(θ̂n − θ0)(θ̂n − θ0)>)

≈ Tr
(σ2

n

n∑
t=1

∇θΠ∞(θ0)(Xt)∇θΠ∞(θ0)(Xt)
>

E[∇θΠ∞(θ0)(Xt)∇θΠ∞(θ0)(Xt)
>]−1NN>

)
≈ σ2Tr(Var (N)) = σ2Tr(Ip+q) = σ2(p+ q)

where N ∈ Rp+q is a standardized and centered gaussian vector with Var (N) = Ip+q the
identity matrix. We obtain that

n∑
t=1

(Xt −Π∞(θ̂n)(Xt))
2 ≈

n∑
t=1

(Xt −Π∞(θ0)(Xt))
2 − σ2(p+ q).

This result, depending only on the predictions, may be extended in misspecified cases. The
quality of the prediction at θ̂n estimated on the sample (X1, . . . Xn) is strictly better than
the best possible prediction (using θ0). This statement is not contradictory because using
twice in (Xt − Π(θ̂n(p, q))(Xt))

2, once for calculating θ̂n and another time for estimating
the function E[`0], one under estimates the risk of prediction. It is because θ̂n uses the
future at to predict Xt with Π(θ̂n(p, q))(Xt).

3.3.5 Akaike and other information criteria

One faces a crucial issues when fitting an ARMA model to observations that are not issued
from an ARMA model themselves (the model is misspecified, which is always the case in
practice). Thus, in order to find the sparsest ARMA representation for our observation
(Xt) it is fundamental to have some criteria in order to choose the smallest order (p, q) of
the model.

A good measure between distributions is the KL-divergence, see Section 3.3.1. From
an ARMA(p, q) model, the QML approach will predict the future value thanks to the
distribution N (Π∞(θ̂n)(X0), σ̂2

n). Let us define
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Definition. The predictive power of the model ARMA(p, q) fitted by the QMLE is

−E[K(PX0|X−1,X−2
,N (Π∞(θ̂n)(X0), σ̂2

n)) | θ̂n, σ2
n].

It is the KL divergence between the distribution of the future of the observation given
the past and the distribution of the prediction given the ARMA(p, q) model fitted by the
QMLE.

By comparing the predictive power for different orders (p, q) and choosing the smallest
number of parameters p+q that achieves the maximal predictive power, one should choose
the sparsest ARMA representation with the best prediction. Let us denote θ̂n(p, q) the
QMLE for the ARMA(p, q) model and

σ̂2
n(p, q) =

1

n

n∑
t=1

(Xt −Πt(θ̂n(p, q))(Xt))
2

rLt (θ̂n(p, q))
.

Akaike idea is to approximate (−2 times) the predictive power by penalizing the quantity

1

n
Ln(θ̂n) =

1

n

n∑
t=1

(
log(σ̂2

n(p, q)rLt (θ̂n(p, q))) +
(Xt −Π(θ̂n)(Xt))

2

σ̂2
n(p, q)rLt (θ̂n(p, q))

)
.

However, the above expression is a biased estimator of (−2 times) the predictive power be-
cause the sample (X1, . . . Xn) is used twice in (Xt−Π(θ̂n(p, q))(Xt))

2, once for calculating
θ̂n and another time for estimating the function E[`0]. More precisely, we have

Definition. We define three information criteria as penalized log-likelihood

1. Akaike Information Criterion: AIC = 1
nLn(θ̂n(p, q)) + 2(p+q)

n ,

2. Bayesian Information Criterion: BIC = 1
nLn(θ̂n(p, q)) + logn(p+q)

n ,

3. Akaike Information Criterion corrected: AICc = 1
nLn(θ̂n(p, q)) + 2(p+q+1)

n−p−q−2 .

We have 1
nLn(θ̂n) ≈ log(σ̂2

n(p, q))+1 when rt(θ̂n(p, q))→ 1 (i.e. the well-specified case)

and some authors considered instead AIC = log(σ̂n(p, q))+ n+2(p+q)
n , BIC = log(σ̂n(p, q))+

n+logn(p+q)
n and AICc = log(σ̂2

n(p, q)) + n+p+q
n−p−q−2 .

The procedure is then to select the order (p̂n, q̂n) that minimizes one of the information
criterion. Notice that one can compare the penalties and as AIC < AICc < BIC for a
fixed model, the order chosen by the procedure will be reversed; BIC will choose the
sparsest model whereas AIC will choose the model with the largest number of parameters.

If the observations (Xt) satisfies an ARMA(p,q) model then

• BIC procedure chooses the correct order,

• AIC and, a fortiori, AICc, select the best predictive model.

Notice that the best predictive model is not necessarily the true model. AICc is preferred
to AIC that can over-fit when n is small. The last item follows from the heuristic

Proposition. The AIC and AICc defined above are asymptotically unbiased estimators of
the predictive power of the ARMA(p, q) model.
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Proof. We give the heuristic for the AIC only. Consider the approximation of the QLik
1
nLn(θ̂n(p, q)) as

log(σ̂2
n(p, q)) +

1
n

∑n
t=1(Xt −Πt(θ̂n(p, q))(Xt))

2

σ̂2
n(p, q)

.

We will show that, up to an additive constant, it is an unbiased estimator of the mean of
the predictive power

log(σ̂2
n(p, q)) +

E[(X0 −Π∞(θ̂n(p, q))(X0))2 | θ̂n(p, q)]

σ̂2
n(p, q)

.

From the discussion Section 3.3.4 we have

n∑
t=1

(Xt −Πt(θ̂n(p, q))(Xt))
2 ≈

n∑
t=1

(Xt −Π∞(θ̂n(p, q))(Xt))
2

≈
n∑
t=1

(Xt −Π∞(θ0(p, q))(Xt))
2 − σ2(p+ q).

On the opposite, we have the decomposition of the predictive power term

E[(X0 −Π∞(θ̂n(p, q))(X0))2 |θ̂n(p, q)]

≈ E[(Π∞(θ0(p, q))(X0)−Π∞(θ̂n(p, q))(X0))2 | θ̂n(p, q)]

+ E[(X0 −Π∞(θ0(p, q))(X0))2]

where the last identity is from the fact that θ0 is the unique minimizer of

E
[
(X0 −Π∞(θ)(X0))2

]
and thus the derivative w.r.t. ϕ of the square risk is approximatively null (similar dis-
cussion than in Section 3.3.4 on the square risk and not the square loss). Thanks to the
asymptotic normality of the QMLE, we evaluate

E[(Π∞(θ0)(X0)−Π∞(θ̂n(p, q))(X0))2 | θ̂n(p, q)]

≈ 1

n

n∑
t=1

(Xt −Π∞(θ0(p, q))(Xt))
2

≈ σ2(p+ q)

n
.

Assuming that σ̂2
n ≈ σ2 (this point is true only asymptotically, a refinement taking into

account the expectation of E[σ̂−2
n ] yields AICc), we obtain the desired result

1

n
Ln(θ̂n(p, q)) +

2(p+ q)

n
≈ log(σ̂2

n(p, q)) +
E[(X0 −Π∞(θ0(p, q))(X0))2]

σ̂2
n(p, q)

+
p+ q

n

≈ log(σ̂2
n(p, q)) +

E[(X0 −Π∞(θ̂n(p, q))(X0))2 | θ̂n(p, q)]

σ̂2
n(p, q)

.



40 CHAPTER 3. QUASI MAXIMUM LIKELIHOOD FOR ARMA MODELS

3.3.6 Interval of prediction.

The aim of time series model is to produce forecasting under the condition that (Xt)
is stationary. We will assert the point and interval predictions produced by the ARMA
model and we will discuss its ability.

Let us first consider the one step prediction. The prediction of Xn+1 is given by
X̂n+1 = Πn(θ̂n)(Xn+1). Notice that by construction it is an estimator of Πn(θ0)(Xn+1)
and we have from previous discussion

E[(Xn+1 − X̂n+1)2] . RL∞ + E[(Π∞(Xn+1)−Πn(θ0)(Xn+1))2] +
σ2(p+ q)

n
.

Such inequality is called an oracle inequality. The best prediction within the model is
Πn(θ0)(Xn+1) and is called the oracle. The risk of prediction of the oracle is approxima-
tively

RL∞ + E[(Π∞(Xn+1)−Πn(θ0)(Xn+1))2]

the sum of the best risk of prediction and the square of the bias of the model ARMA(p, q).

An interval of prediction is often more useful than a point prediction. The QMLE
produced a natural interval of confidence α such as

Îα(Xn+1) = [X̂n+1 − qN1−α/2σ̂n; X̂n+1 + qN1−α/2σ̂n]

where qN1−α/2 is the quantile of order 1 − α/2 of the standard gaussian r.v. N . It is an
estimator of the best interval for Xn+1 given the past which is defined as

Iα(Xn+1) = [qβ(Xn+1 | Xn, . . . , X1), qα−β(Xn+1 | Xn, . . . , X1)]

where qβ(Xn+1 | Xn, Xn−1, . . .) is the quantile of order 0 ≥ β ≥ 1 of the conditional
distribution of Xn+1 given the observations X1, . . . , Xn and β is chosen such that the
length of the interval is the smallest possible. Often, we assume that the conditional
distribution is symmetric and then β = α/2.

From an ARMA model, it is also possible to produce h step prediction intervals for
any h ≥ 1 as

Iα(Xn+1) = [Πn(θ̂n)(Xn+h)− qN1−α/2σ̂n(h); Πn(θ̂n)(Xn+h) + qN1−α/2σ̂n(h)]

where Πn(θ)(Xn+h) is the best linear projection of Xn+h on the span of the observation
given the ARMA model θ such that

Πn(θ)(Xn+h) ≈
p∑
i=1

φiΠn(θ)(Xn+h−i) +

q∑
j=h

θj(Xn+h−j −Πn+h−j−1(θ)(Xn+h−j))

and σ̂n(h) is the associated risk

σ̂2
n(h) ≈ σ̂2

n

h−1∑
j=0

ψ2
j .

Notice that the issue of the explicit and efficient computations of those quantities will be
treated later.

The usefulness of the interval of prediction is that it provides indicators of risk ;
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Definition. The length of the interval |Îα(Xn+1))| is an indicator of the risk of prediction
with confidence level 1−α; in the symmetric case, the lower and upper points are indicators
of the risk of lower and higher values with level α/2 called Values at Risks (VaR, quantiles
of the conditional distribution).

In the conditional gaussian case all these quantities are proportional to the conditional
variance Var (Xn+1 | Xn, . . . , X1) also called the volatility. It is the main indicator to
assess risks in finance and insurance. The prediction forecast provides good indicators of
any level if it has a large predictive power

−E[K(PX0|X−1,X−2
),Pθ̂n(X0 | X−1, X−2, . . .)) | θ̂n],

where Pθ̂n(X0 | X−1, X−2, . . .) is the conditional distribution of the stationary version of

the model fitted by the QMLE θ̂n.
The QMLE for ARMA models estimate those indicators with a quantity proportional

to σ̂2 ≈ σ2 which is approximatively a constant. It is a drawback on the conditional
distribution

Pθ̂n(X0 | X−1, X−2, . . .) = N (Πn(θ̂n)(Xn+1), σ̂2
n)

which is dependent on the present observations only for the mean Πn(θ̂n)(Xn+1). Thus,
ARMA models produce good point prediction but may fail for interval of predictions. The
center of the interval of prediction is accurate in view of the past values but not the length
of the interval that adapts not well to the present behavior of the time series.

Example. Let us consider Xt = φXt + Zt where (Zt) is a WN(σ2). Then the interval of
prediction of confidence level 1− α is given by

Îα(Xn+1) = [φ̂nXn − qN1−α/2σ̂n, φ̂nXn + qN1−α/2σ̂n]

where φ̂n =
∑n

t=2XtXt−1/
∑n

t=1X
2
t is the QMLE and

σ̂2
n =

n∑
t=2

(Xt − φ̂nXt−1)2 +X2
1 (1− φ̂n)

is the estimation of the variance. Then the variance and the length of the interval of
prediction does not depend on the present variability of the time series as shown in Figure
3.3.6

In order to estimate risk indicators more adaptive to the actual variability of the
observed time series, the concept of volatility has been introduced:

Definition. Consider a second order stationary time series. Its volatility at time t is its
conditional variance given the past

σ2
t = Var (Xt | Xt−1, Xt−2, . . .).

Notice that the volatility is a predictable process in the sense that at time t it depends
on the past. Assuming the gaussian assumption on the conditional distribution, a better
1-step prediction interval from an ARMA model is given by

[Πn(θ̂n)(Xn+1 − qN1−α/2σ
2
n+1,Πn(θ̂n)(Xn+1 + qN1−α/2σ

2
n+1],

where σ2
n+1 is the volatility at time n+ 1. It produces nice risk indicators and the length

of the interval of prediction adapts to the present volatility of the time series. As the
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Figure 3.1: The interval of prediction does not take into account the present variability
of the time series. When the present variability is low (on the left), the interval is too
conservative (too large). On the opposite, when the present variability is high (on the
right), the interval is too optimistic (too low).

volatility is predictable, one can estimate it thanks to some model. No ARMA model can
as one should model the volatility of the WN as

Var (Xt | Xt−1, Xt−2, . . .) = Var (Xt − E[Xt | Xt−1, Xt−2, . . .] | Xt−1, Xt−2, . . .)

= Var (Zt | Xt−1, Xt−2, . . .).

It is the purpose of the next chapter.



Chapter 4
GARCH models

We consider (Zt) an observed WN. This WN is actually most of the time the residuals
(innovations) of an ARMA model fitted by the QMLE in a first step of the analysis.

Definition. The GARCH(p, q) model (Generalized Autoregressive Conditional Heteroscedas-
tic) is solution, if it exists, of the system:{

Zt = σtWt, t ∈ Z,
σ2
t = ω + β1σ

2
t−1 + βpσ

2
t−p + α1X

2
t−1 + αqZ

2
t−q,

with ω > 0, αi, βi ≥ 0 and (Wt) ∈ SWN(1).

Remark. If βi = 0, 1 ≤ i ≤ p, GARCH(0,q)=ARCH(q). If αi = 0, 1 ≤ i ≤ q, σ2
t =

ω/(1− β1 + . . .+ βp) is degenerate.

In the sequel, we focus for simplicity on p = q = 1.

4.1 Existence and moments of a GARCH(1,1)

We say that (Zt) is a non-anticipative solution of a GARCH(1,1) model if Zt ∈ Ft =
σ(Ws, s ≤ t).
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Figure 4.1: A trajectory and the corresponding ACF of the solution of a GARCH(1,1)
model and its squares (to be compared with the SWN case)
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Proposition. A GARCH(1,1) model such that α+ β < 1 has a non-anticipative solution
(Zt) which is a stationary WN(σ2 := ω/(1− α + β). Then σ2

t = Var (Zt | Zt−1, Zt−2, . . .)
is the predictable (σ2

t ∈ Ft−1) volatility of (Zt).

Proof. Write σ2
t = ω+ (β+αW 2

t−1)σ2
t−1 as an AR(1) model with random coefficients. We

have an explicit solution, which is non-anticipative and stationary (if the series converges)

σ2
t = ω + (β + αW 2

t−1)
(
ω + (β + αW 2

t−2)σ2
t−2

)
= ω

+∞∑
j=1

j∏
k=1

(β + αW 2
t−k) + 1


Let Yj =

∏j
k=1(β+αW 2

t−k). As soon as
∑+∞

j=1 E [|Yj |] < +∞, the series
∑+∞

j=1 Yj converges
a.s. absolutely. We have:

E [|Yj |] = E

[
j∏

k=1

(β + αW 2
t−k)

]
=

j∏
k=1

E
[
β + αW 2

t−k
]

= (β + α)j

If α + β < 1, then
∑+∞

j=1(β + α)j < +∞ and σ2
t a.s. exists, is predictable and E[σ2

t ] =

σ2. So Zt = σtWt exists and E[Z2
t ] = E[σ2

tW
2
t ] = E[σ2

t ] because E[W 2
t ] = 1 and σ2

t is
predictable. Moreover, E[Zt | Ft−1] = σtE[Wt | Ft−1] = 0 and, for s < t, E[ZsZt] =
E[ZsσtE[ZtFt−1]] = 0.

Remark. • The volatility σ2
t = ω + βσ2

t−1 + αZ2
t−1 is also invertible if β < 1, i.e.

σ2
t = σ(Wt−1, σ

2
t−1, σ

2
t−2, . . .).

• The WN is unpredictable, i.e. E[Zt | Ft−1] = 0 so that the best prediction is 0. One
also say that (Zt) is a martingale differences sequence.

If |Xt−1| is large, then σ2
t ≥ αX2

t−1 is too and thus Xt has a large conditional variance.
We talk about periods of high volatility. Thanks to non-linearity, the model captures a
conditionally heteroscedastic behavior, which we observe in finance for example.

Exercise. • Show that if α+ β ≥ 1, there exists no second order stationary solution.

• Let 0 ≤ α + β < 1 and 1 − κα2 − β2 − 2αβ > 0, with κ = E
[
Z4
t

]
. Show that (σ2

t )

admits a second order stationary solution and determine the kurtosis
E[X4

t ]
Var [Xt]

2 .

• Show that if 1 − κα2 − β2 − 2αβ ≤ 0, then (σ2
t ) has no second order stationary

solution.

The stationary solution of a GARCH(1,1) exists under much weaker solution. Station-
ary solutions that are not second order stationary satisfies E[Z2

t ] = ∞, one says they are
heavy tailed.

Theorem. If E
[
log(β + αZ2

0 )
]
< 0 and E

[
| log(β + αZ2

0 )|
]
< ∞, then the GARCH(1,1)

model has a (strictly) stationary solution.

Proof. Let (Y ′t ) iid, Y ′t = log(β + αW 2
t ). By the strong law of large numbers:

1

n

n∑
t=1

Y ′t
a.s.−→ E [Y0] = E

[
log(β + αW 2

0 )
]
< +∞
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Besides,
∑n

j=1 Yj =
∑n

j=1

∏j
k=1(αW 2

t−k + β) converges a.s. absolutely if it satisfies the

Cauchy criteria. Let us show that Y
1
j

j
a.s.−→ ρ with ρ < 1.

P
(
Y

1
j

j −→ ρ

)
= 1⇔ P

( j∏
k=1

αW 2
t−k + β

) 1
j

−→ ρ

 = 1

⇔ P

[
exp

(
1

j

j∑
t=1

Y ′t

)
−→ ρ

]
= 1

⇔ P

(
1

j

j∑
t=1

Y ′t −→ log ρ

)
= 1

This equality is true with log ρ = E
[
log(β + αW 2

0 )
]
< 0.

Remark. If α+β < 1, then by Jensen’s inequality E
[
log(β + αW 2

0 )
]
≤ log

(
E
[
β + αW 2

0

])
=

log(α+ β) < 0.

Example. Consider the ARCH(1) model with β = 0 etW0 ∼ N (0, 1), then E
[
log(αW 2

0 )
]
<

0 ⇔ α < 2eγ ' 3, 56. The stationary condition is much weaker than the second order
stationary condition α < 1 (as β = 0).

Remark. The GARCH(1,1) model under the condition E
[
log(β + αW 2

0 )
]
< 0 (⇒ β < 1)

is invertible:

σ2
t =

+∞∑
j=0

βj(ω + αZ2
t−j−1), t ∈ Z.

The GARCH model is a special case of a stochastic volatility model. We call stochastic
volatility model (Xt) a solution of{

Zt = σtWt, t ∈ Z,
σt > 0 is a predictable non anticipative sequence.

4.2 The Quasi Maximum Likelihood for GARCH models

Let us consider the QML approach for constructing an M -estimator for a GARCH(1,1)
model with θ = (ω, α, β) ∈ R3. Assume that (Wt) is gaussian N (0, 1) and that E[log(β +
αW 2

0 )] < 0 such that the conditional log-likelihood of the stationary model is

−2 log(fθ(Zt | Zt−1, Zt−2, . . .)) = log(σ2
t (θ)) +

Z2
t

σ2
t (θ)

as

σ2
t (θ) =

+∞∑
j=0

βj(ω + αZ2
t−j−1)

is invertible because β < 1. We also have

σ2
t (θ) = ω + βσ2

t−1(θ) + αZ2
t−1, t ∈ Z,

which is observable for t ≥ 2. We approximate σ2
t (θ) with σ̂2

t (θ) such that

σ̂2
t (θ) = ω + βσ̂2

t−1(θ) + αZ2
t−1, from σ̂2

0(θ) arbitrary, (4.1)

The approximation error is a.s. bounded as O(βt).
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Definition. The QMLE is the M -estimator defined as

θ̂n ∈ arg min
Θ

n∑
t=1

log(σ̂2
t (θ)) +

Z2
t

σ̂2
t (θ)

where Θ = (0,∞)× [0,∞)× [0, 1) and (σ̂2
t (θ)) is defined recursively thanks to (4.1).

Notice that the condition E[log(β + αW 2
0 )] < 0 is not explicit and cannot be used in

the definition of the QMLE. It is enough to ensure that the model is invertible β < 1 so
that the arbitrary initial choice in (4.1) is not important.

Assume that (Zt) is WN(σ2). The QLik risk is, using the tower property,

E

log

+∞∑
j=0

βj(ω + αZ2
t−j−1)

+
Z2

0∑+∞
j=0 β

j(ω + αZ2
t−j−1)


= E

log

+∞∑
j=0

βj(ω + αZ2
t−j−1)

+
σ2

0∑+∞
j=0 β

j(ω + αZ2
t−j−1)

 ,
where σ2

0 is the true volatility. The integrand is larger than 1 and equal to one iff σ2
0 =∑+∞

j=0 β
j(ω+αZ2

t−j−1) a.s.. Thus, the QLik risk is minimized by the volatility satisfying the
GARCH(1,1) equation that is the closest to the true volatility. Notice that the risk is not
equivalent to the square risk as it was the case for the ARMA model. Actually, it is very
robust to heavy tailed (Zt). Even if then the volatility does not exist when E[Z2

0 ] = ∞,
the QMLE for GARCH(1,1) is very useful to build risk indicators and prediction intervals.
We have

Theorem. Assume that (Zt) is a stationary and ergodic time series so that E log+(Z0)2 <
∞. Then the QMLE converges to the set of minimizers of the QLik risk

d(θ̂n,Θ0)→ 0, a.s.

If moreover (θ̂n) converges to θ0 ∈
◦
Θ and (Zt) satisfies a volatility model Zt = σtWt with

(Wt) SWN(1) and E[W 4
0 ] <∞ then

√
n(θ̂n − θ0)

d.−→ N3

(
0, (E[W 4

0 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]−1
)
.

This result will be proved in full generality for any GARCH(p, q) mode later. In
particular we have the identities

Var (S0) = I(θ0) = 4(E[W 4
0 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]
.

The QMLE is efficient only if (Wt) gaussian WN(1). In this case E[W 4
0 ]− 1 = 1 and the

inverse of the Fisher information is the Cramer-Rao bound.

4.3 Simple testing on the coefficients

4.3.1 Tests of nullity

Having computed the QMLE (θ̂n), a natural issue is overfitting. Thus, one will test whether
one can reject the null hypothesis
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1. ARCH model θ3 = β = 0,

2. SWN model θ2 = α = 0.

To do so, one will construct a region of reject of the form θ̂i > ci for some constant ci well
chosen. Assuming the conditions of the asymptotic normality met, one will denote the
asymptotic variances

se2
i = (E[W 4

0 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]−1

ii

.

Assume that the asymptotic properties still hold on the boundary of the parameter set
Θ0 so that θi ≈ (sei/

√
n) max{N (0, 1), 0} in distribution under the null hypothesis. For

N standard gaussian r.v., the p-value of the test is P(
√
nθ̂i/sei ≥ max{N, 0}) = P(N ≥

−
√
nθ̂i/sei), the smallest level of the test that reject the null hypothesis, i.e. the probability

to reject the null hypothesis abusively.

One issue arises: there is no explicit expression of sei in term of θ so one has to estimate
the asymptotic variance in another way than the usual plug-in method θ = θ̂n. To do so,
we differentiate the recursive equation (4.1) followed by σ̂2

t (θ)

∇σ̂2
t (θ) =

 1
Z2
t−1

σ̂2
t−1(θ)

+ β∇σ̂2
t−1(θ),

staring from an arbitrary initial value that is forgotten exponentially fast when β < 1.
Thus one can approximate

E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]
≈ 1

n

n∑
t=1

∇σ̂2
t (θ̂n)∇σ̂2

t (θ̂n)

σ̂2
t (θ̂n)2

,

invert the approximation and estimate

E[W 4
0 ]− 1 ≈ 1

n

n∑
t=1

Ŵ 2
t − 1

where Ŵt = Zt/σ̂t(θ̂n) are the residuals of the GARCH(1,1) model. Doing so, one obtains
a consistent estimator of sei.

Another issue arises: there is no uniqueness of θ̂0 under the null α = 0 as then the
volatility is degenerate to ω/(1−β). The asymptotic normality of the QMLE could not hold
in this case. The idea is to check first whether β = 0, if yes then use the QMLE computed
for the ARCH(1) model (adapting the previous construction under the constraint β = 0)
and then test α = 0 on the obtained α̂n.

4.3.2 Test of second order stationarity

Another natural test is weather the fitted model satisfied the second order condition α+β <

1. Under the null hypothesis, we have (ω0, α0, β0) ∈
◦
Θ0 when α0 + β0 = 1 and β0 > 0, θ0

is uniquely determined as the minimizer of the QLik risk and the asymptotic normality
holds. We have √

n(α̂n + β̂n − 1)
d.−→ N (0, se2

2 + se2
3 + 2c23)
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where

c23 = E[W 4
0 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]−1

23

can be consistently estimated in the same way than in the previous subsection.

The p-value of the corresponding test, with reject region of the form α̂n + β̂n − 1 > c
for some constant c, is

P

(
N < −

√
n(α̂n + βn − 1)/

√
se2

2 + se2
3 + 2c23

)
because the region is one-sided

4.3.3 Invertibility test

If β̂n . 1 under the constraint β < 1, which is often the case in finance, it is legitimate
to ask weather the condition of invertibility is satisfied. If one assumes that under the
null β ≥ 1 and E[log(β + αZ2

0 )] > 0 then one can proceed to a test rejecting on β. Under
E[log(β + αZ2

0 )] > 0, as σ2
t > 0, it is not difficult to prove that σ2

t → +∞ infinitely
fast. Thus, we are in an explosive case where the heteroscedasticity yields unstability and
the variability will always increase. In that situation, the initial arbitrary value in the
recursive formula (4.1) defining the QMLE is not important. What matters is the rate of
divergence of the volatility which is driven by the coefficients (α, β). One can show that
the QMLE is asymptotically normal when the model is well specified

√
n(β̂n − β0)

d.−→ N (0, se2)

where

se2 =
(1 + µ1)µ2

β2
0(1− µ1)(1− µ2)

with

µi = E

[(
β0

α0W 2
0 + β0

)i]
Notice that se can be estimated from the residuals Ŵt and plugging in β̂n. The p-value of
the test with reject region of the form β̂n < c is of the form

P(N <
√
n(β̂n − 1)/se).

Notice that if one cannot reject the test (the p-value is too large) then we are not
confident in being in the invertible domain. In that case, one suspects that the stationary
condition is not satisfied on the centered (Zt) that may have the behavior of a centered
random walk. In that case, one should try to difference the original process one more time
as, for instance, there is no consistent estimator of ω and the volatility is not predictable.

4.4 Intervals of prediction

Once we found the good volatility model for the conditional variance (GARCH(1,1),
ARCH(1) or a constant from the previous discussion), the volatility is predicted by

σ̂2
n+1(θ̂n) = ω̂n + β̂nσ̂

2
n(θ̂n) + α̂nZ

2
n.
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Thus we obtain the interval of prediction of confidence level α as

Iα(Zn+1) = [−qN1−α/2σ̂n+1(θ̂n), qN1−α/2σ̂n+1(θ̂n)].

It is centered on 0 and the point prediction is useless. However the length of the interval
is very useful for risk assessment. Similarly, one can produce h step prediction intervals
using the recursion

σ̂2
n+h(θ̂n) = ω̂n + (β̂n + α̂n)σ̂2

n+h−1(θ̂n), h ≥ 1,

estimating Z2
n+h−1 non observed by σ̂2

n+h−1(θ̂n).
AS the volatility of the noise is also the volatility of the original process, one can build

from the two-stage estimation (QML approach on (Xt) with the ARMA model and on the
residuals (It) with the volatility model) a prediction interval on Xn+h

Iα(Xn+h) = [Πn(θ̂n)(Xn+h)− qN1−α/2σ̂n+h(θ̂n),Πn(θ̂n)(Xn+h) + qN1−α/2σ̂n+h(θ̂n)],

with some abuse of notation as there is two different θ̂n, one for the ARMA and another
for the GARCH. Actually, it is preferable to consider the likelihood of

Xt = φ1Xt−1 + · · ·+ φpXt−p + γ1Zt−1 + · · ·+ γqZt−q,

Zt = σtWt, t ∈ Z
σ2
t = ω + βσ2

t−1 + αε2
t−1,

under the assumption that (Wt) is a gaussian WN(1). Then the parameters are

θ = (φ1, . . . , φp, γ1, . . . , γq, ω, α, β)> ∈ Rd, d = p+ q + 3,

is estimated by the QMLE minimizing L̂n(θ) =
∑n

t=1
ˆ̀
t(θ) computed recursively as follows:

Starting from arbitrary initial values, observing recursively Xt,

1. compute the innovation It(θ) = Xt − X̂t(θ) and the QLIK loss ˆ̀
t(θ) = log(σ̂2

t (θ)) +
It(θ)

2/σ̂2
t (θ),

2. update the variance of the WN σ̂2
t+1(θ) = ω + βσ̂2

t (θ) + αIt(θ)
2,

3. predict the next observation X̂t+1(θ) = φ1Xt + · · · + φpXt−p+1 + γ1It(θ) + · · · +
γqIt−p+1(θ).

This one-step QMLE is strongly consistent

Theorem (Francq & Zaköıan). If the observations satisfy the ARMA(p,q)-GARCH(1,1)
model with θ0 ∈ Θ satisfying the condition of stationarity of the GARCH model, the
Hannan’s condition C and β < 1, then the QMLE is strongly consistent.
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Part III

Online algorithms
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Chapter 5
The Kalman filter

5.1 The state space models

By contrast with the AR models, it is much more difficult to find the best possible (linear)
prediction of an ARMA model. Indeed, as soon as the MA part is non degenerate, the
filter can have infinitely many non null coefficients. One way to circumvent the problem
is to consider the ARMA model as a more general linear model called state space models.
Those models have been introduced in signal processing and the best linear prediction can
be computed recursively by the Kalman’s recursion.

Definition. A state space linear model of dimension r with constant coefficient is given
by a system of a space equation and state equations of the form{

Xt = G>Yt + Zt, Space equation,

Yt = FYt−1 + Vt, State equation.

where (Zt) and (Vt) are uncorrelated WN with variances R and Q, G ∈ Rr, F ∈ M(r, r)
and Y ∈ Rr is the random state of the system.

In the cases were both (Zt) and (Vt) are SWN the state-space models have a nice inter-
pretation: the state Y is a Markov chain that governs the distribution of the observations
X in the sense that conditionally on (Yt) the Xt’s are independent. It is a specific case
of Hidden Markov model with continuous state. Notice that (Vt) is actually a WN in Rr,
meaning a weak stationary sequence of uncorrelated vectors with mean 0 ∈ Rr and co-
variance matrix Q. Notice that the different coordinates of the space Yt = (Y1,t, . . . , Yr,t)

′

can be correlated at each time t.
State space representations are not unique. We shall give two representations for an

ARMA (p, q) model. The first one directly shows up from the compact equation φ(T )Xt =
γ(T )Zt and it has dimension r = max(p, q + 1). Hereafter we use the convention that the
coefficients φj = 0 and γj = 0 for any j > p and j > q respectively. We can write

Xt = (1, γ1, . . . , γr−1)>Yt, Space equation,

Yt =


φ1 φ2 · · · φr

1 0 · · · 0
...

. . .
. . .

...

0 . . . 1 0

Yt−1 +


Zt

0
...

0

 , State equation.
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In the causal case, it is possible to establish a better representation, i.e. a state space
representation with the lower dimension r = max(p, q):

Xt = (1, 0, . . . , 0)>Yt + Zt, Space equation,

Yt =


0 1 · · · 0
...

. . .
. . .

...

0 . . . 0 1

φr · · · φ2 φ1

Yt−1 +


ψ1

...

...

ψr

Zt−1, State equation.

where ψ1, . . . , ψr are the coefficients of z, . . . , zr in the Laurent series ψ. For a proof of this
result, see p.470-471 of B&D. This representation is called the canonical representation.
It is very useful as Yt,h = Πt−1(Xt+h−1), the h step prediction at time t− 1. Notice also
that in this representation Yt is predictable.

Any ARMA model can be represented as a state-space model. Of course the contrary
is not true. Consider for instance a time series (Xt) that could be predicted with k
explanatory variables Xt−1. Here explanatory variables are indexed by t − 1 as they
are supposed to be observed before the variable of interest. Then one can consider the
state-space model

Xt = (1, 0, . . . , 0)>Yt + Zt, Space equation,

Yt =


0 1 · · · 0
...

. . .
. . .

...

0 . . . 0 1

φr · · · φ2 φ1

Yt−1 +


L>1
...
...

L>r

Xt−1 +


ψ1

...

...

ψr

Zt−1, State equation,

where Xt−1 is a k × r matrix that stacks the vectors Xt−1, . . . ,Xt−1 and the Li are coef-
ficients of dimension k that quantifies the linear influence of the past Xt−1 on the h step
prediction Yt−1,h at time t− 1. Such system is called ARMAX state-space representation
(see Hannan and Deistler) but this parametrization is not the unique one and suffers over-
parametrization. One could prefer the parametrization such that Li = L for all 1 ≤ i ≤ k.
It is difficult to find the good representation for such models. We will not investigate
further this model because of that drawback and we will prefer state-space models with
random coefficients, see below.

5.2 The Kalman’s recursion

To start the Kalman’s recursion, let us take an arbitrary initial values Ŷ0 and Ω0. Assume
now that we have a recursive procedure providing at each step X̂n = Πn−1(Xn), RLn =
Var (In), Ŷn = Πn−1(Yn) and Ωn = E[(Yn − Ŷn)(Yn − Ŷn)>], the covariance matrix of
the prediction error of the state Yn.

Let us compute X̂n+1 = Πn(Xn) in a recursive way. Applying the linear projection Πn

on the state equation Xn+1 = G>Yn+1 + Zn+1 it is clear that

X̂n+1 = G>Ŷn+1.

By definition of the innovation In and the decomposition of Proposition 1.2.5, we have

Ŷn+1 = Πn(Yn+1) = Πn−1(Yn+1) + PIn(Yn+1).
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The first term is computed recursively using the space equation

Πn−1(Yn+1) = FΠn−1(Yn) = FŶn.

So it remains to compute recursively the second term PIn(Yn+1). By definition of the
orthogonal projection, there exists θ ∈ Rr such that PIn(Yn+1) = θIn and Yn+1−θIn ⊥ In.
So

E[(Yn+1 − θIn)In] = 0⇔ θE[I2
n] = E[Yn+1In].

We recognize the risk of linear prediction E[I2
n] = RLn . We can also compute recursively

E[Yn+1In] = E[Yn+1(G>(Yn − Ŷn) + Zn)]

= E[(FYn + Vn)(G>(Yn − Ŷn) + Zn)]

= E[(F(Yn − Ŷn)G>(Yn − Ŷn)]

= FΩnG

by orthogonality of Ŷn with Yn − Ŷn and Zn and of Zn with Vn and Yn. So arranging
all those terms, we derive the formula

Ŷn+1 = FŶn +
FΩnG

G>ΩnG+R
(Xn −G>Ŷn)

Let us denote Kn = FΩnG/(G
>ΩnG+R) and call it the Kalman’s gain. Finally, in order

to apply the complete recursion, one has to compute Ωn+1 and RLn+1. Using the identity

Ωn+1 = E[Yn+1Y
′
n+1]− E[Ŷn+1Ŷ

>
n+1]

together with the state equation and the recursive formula Ŷn+1 = FŶn+KnIn, we obtain

Ωn+1 = FE[YnY
>
n ]F> + Q− FE[ŶnŶ

>
n ]F> −KnE[I2

n]Kn
>

= FΩnF
> + Q−KnG

>ΩnF
>.

To compute RLn+1, we use the identity In+1 = Xn+1−G>Ŷn+1 = G>(Yn+1−Ŷn+1)+Wn+1

and by orthogonality between Zn and the linear span of Yn+1 and X1, . . . , Xn:

RLn+1 = E[I2
n+1] = E[(G>(Yn+1 − Ŷn+1) +Wn+1)2] = G>Ωn+1G+R.

Finally, we have the following theorem

Theorem (Kalman). In a state-space model with constant coefficients, if Ŷ0 and Ω0 are
well-chosen, one can compute recursively X̂n = Πn−1(Xn), RLn = E[(Xn − X̂n)2], Ŷn =
Πn−1(Yn) and Ωn = E[(Yn − Ŷn)(Yn − Ŷn)>] by the following recursion

Ŷn+1 = FŶn +
FΩnG

RLn
(Xn −G>Ŷn)

X̂n+1 = G>Ŷn+1

Ωn+1 = FΩnF
> + Q− FΩnG

RLn
G>ΩnF

>

RLn+1 = G>Ωn+1G+R.
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The Kalman’s recursion has several advantages, even in for AR models when compared
to the Yule Walker approach:

• It is a recursive procedures, particularly well suited in signal processing or high-
frequency data, i.e. when observations are observed consecutively,

• Each step requires the inversion of a scalar RLn and not the entire covariance matrix,

• The recursion can handle missing values nicely.

The Kalman’s recursion has one major drawback for statistical application: It requires to
know the coefficients in the state and space equations. In practice, we want to estimate
the parameters θ = (φ1, . . . , φp, γ1, . . . , γq) of an ARMA model. One way to conciliate this
contradiction is to use the Bayesian approach. We will not pursue this approach here.

Two issues arise: the first one is about the regularity conditions that are related
with optimization problems. This fundamental issue will not be treated in the notes as
a diagnostic of convergence is usually provided by any procedure like nlminb in R. The
second issue is about the condition on the past. As the past is not observed, it will be
replaced by some arbitrary past and then it will be fundamental to check the stability of
the procedure with respect to this arbitrary choice. This issue will constitute one major
topic of these notes.

5.3 Application to state space models

Let us consider a model that fit into the class of the state space models. The gaussian
assumption used to derive the QLik loss holds on Vt and Zt non degenerate. Notice that
to derive the QLik loss one can always restrict to the standard case Var (Z) = R = σ2 = 1.
Then the linear risk of prediction is the standardized one rLt = RLt /σ

2. The natural
filtration of the problem is Ft = σ(Xt, . . . , X1, Ŷ0,Ω0) as under the iid assumption the
state equation describes a Markov chain. Here θ correspond to the vector containing the
parameters of the model, i.e. the elements of F, G and Q.

Conditionally on Ft−1 the distribution of G>Yt + Zt in the model is a gaussian r.v.
with mean Πt−1(G>Yt+Zt) = G>Ŷt = X̂t(θ) and variance Var (G>(Yi−Ŷi))+1 = rLt (θ).
As both the innovations It(θ) = Xt − X̂t(θ) and their standardized variances rLt (θ) are
computing by the Kalman’s recursion, we derive the following recursion for computing the
QLik contrast:

• Initialization: θ, initial values Ŷ0(θ), Ω0(θ) and L0(θ) = 0

• New observation Xn:

1. Compute the innovation In(θ) = Xn − X̂n(θ),

2. Update the QLik loss Ln(θ) = Ln−1(θ) + I2
n(θ)/σ2rLn (θ) + log(σ2rLn (θ)),

3. Compute the next linear prediction X̂n+1(θ) and the associated standardized
risk rLn+1(θ) thanks to the Kalman’s recursion.

Computing recursively the QLik loss, it is then simple to derive the Quasi Maximum
Likelihood Estimator for state-space models:
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Definition. The QMLE of a stat-space model is defined as a minimizer θ̂n ∈ arg minΘ Ln(θ)
where Ln(θ) is defined recursively thanks to the procedure described above assuming that
R = σ2 = 1. An estimator of σ2 is provided by

σ̂2
n =

1

n

n∑
t=1

I2
t (θ̂n)

rLt (θ̂n)

Notice that, neglecting the optimization issues, one should write θn(Ŷ0) as the whole
procedure depends on the initial state Ŷ0(θ) chosen arbitrarily in practice, because the
distribution Pθ0 driving the observations is unknown.
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Chapter 6
State-space models with random
coefficients

6.1 Linear regression with time-varying coefficients

Assume that we observe some variable of interest (Xt) together with some explanatory
variables Xt−1 ∈ Rk. Here again we index the explanatory variables with t−1 and consider
that there are observed before Xt such that one can use them to build prediction intervals.
In statistics, the most usual model to fit a prediction is the linear regression one

Xt = θTXt−1 + Zt, t ∈ Z.

The unknown parameter θ ∈ Rk is usually estimated thanks to the Ordinary Mean Squares
(OMS) which is equivalent to the MLE under the gaussian assumption on (Zt). The only
difference with the time series setting is that (Xt,Xt−1) is considered iid. Most of the
time, Y ′t−1 is even considered deterministic. One calls this setting the fixed design setting.
It is very close to the time series setting as, in the latter case, we used the principle of
conditioning on the past so that, at time t, Xt−1 is considered as fixed.

Example. Consider Xt−1 = (Xt−1, . . . , Xt−k)
> ∈ Rk then the linear model is equivalent

to an AR(k) model. For k = 1, the OMS∑n
t=2XtXt−1∑n
t=2X

2
t

≈ θ̂n

the QMLE. The only difference is the denominator
∑n

t=2X
2
t instead of

∑n
t=1X

2
t so that

the constraint of stationarity (less than one) is not satisfied for the OMS.

In this chapter, we investigate the time-varying model

Xt = θTt Xt−1 + Zt, t ∈ Z.

We will first see the properties of the simple time-varying model when Xt−1 = Xt−1 and
then see how the Kalman’s recursion can be used to estimate the (time varying) parameter
(θt)
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6.2 The unit root problem and Stochastic Recurrent Equa-
tions (SRE)

One of the most interesting application of the random coefficients setting is to consider
the auto regressive case Xt−1 equals to the observation Xt (and then k = 1):

Xt = θtXt−1 + Zt, t ∈ Z.

Such model has various nice properties, depending on the behavior of the time-varying
coefficients (θt).

Consider the case (θt) is iid N (φ, β). Then, denoted θt =
√
βNt+φ with (Nt) standard

normal, we obtain the identity (in distribution)

Xt = θtXt−1 + Zt = φXt−1 +
√
βNtXt−1 + Zt, t ∈ Z.

It is an SRE, i.e. an auto-regressive transform with random coefficients. Notice that the
volatility of the GARCH model satisfies such recursion too. The special case µ0 = 1 is not
excluded as the stationary solution condition is

E[log(|θ0|)] = E[log(|φ+
√
βN0|)] < 0.

Actually one can choose of µ0 as big as 1.25 by choosing accordingly the value of σ0. The
stationary solution of such SRE exhibits heavy tails comparable to Pareto distribution

Theorem (Goldie). Under the stationary condition, there exists a unique α > 0 such that

E[|θ0|α] = 1.

Under some other conditions on the distribution of V0, there exists coefficients c+ and c−
such that c+ + c− > 0 and

P(X0 > x) ∼x→∞ c+x
−α, P(X0 ≤ −x) ∼x→∞ c−x

−α.

Goldie Theorem is very important as the SRE solution appears as natural heavy-tailed
time series. The parameter α is the index of heavy tail. The time series (Xt) admits finite
moments of order p < α and infinite moments of order p > α.

For µ0 = 1, one can easily check that necessarily α < 2 meaning that the time series
(Xt) does not have finite variance. The second order stationarity condition φ2 + β < 1 is
not satisfied. We have the following result:

Proposition (Klüppelberg & Pergamenchtchikov). The SRE with (Zt) gaussian WN(ω)
with ω > 0 is equivalent to the AR(1)-ARCH(1) model

Xt = φXt−1 + Zt,

Zt = σtWt,

σ2
t = ω + βX2

t−1, t ∈ Z,

where Wt are gaussian WN(1).

Take care that the Zt of the SRE and AR-ARCH representation do not coincide (even
in distribution).
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Another very interesting time-varying autoregressive model is when (θt) itself is solu-
tion of an AR(1) model

θt = Fθt−1 +Hηt.

The model is called doubly-stochastic. It also exhibits heavy tailed phenomenum and its
extremal behavior is really sensitive to the values of F and H.

Those models exhihbit heavy tails because E[θ0] ≈ 1: the random multiplicative coeffi-
cient is fluctuating round 1 in the AR(1) representation. In many economics applications,
it is relevant to consider such models as, when fitting an AR(1) with constant coefficients
φ, the estimator of this coefficient is often close to 1. We then say we face the unit root
problem because the values |φ| ≥ 1 are excluded from the classical inference to produce
stable estimation. It is a well-known problem that has been treated in many ways; one
can for instance consider Integrated ARMA models (ARIMA) that admits an unstable
state-space representation associated to a stable Kalman’s recursion or one can also use
the cointegration analysis. Here we will develop a third approach based on Kalman’s re-
cursion.

6.3 State space models with random coefficients

The main idea is to consider the random coefficients (θt) as hidden states following a
recursive equation. Let us consider the state-space model{

Xt = θ>t Xt + Zt Space equation,

θt = Ftθt−1 + Htηt State equation,

where the coefficients (Ft), (Xt) and (Ht) are random and (ηt) and (Zt) are SWN(Ik) and
SWN(σ2), respectivley. The main assumption is that (Ft), (Xt) and (Ht) are stationary
ergodic sequences adapted to the filtration Ft = σ(ηt, Zt, ηt−1, Zt−1, . . .).

Under the gaussian assumption, working recursively conditionally on Ft−1 and using
that for normal vectors orthogonality and independence is equivalent, one can extend the
Kalman’s recursion

Theorem (Kalman). In a state-space model with random coefficients, under the normal
condition and if Ŷ0 and Ω0 are well-chosen, one can compute recursively X̂n = Πn−1(Xn),
σ2rLn = E[(Xn− X̂n)2], θ̂n = Πn−1(θn) and σ2vn = E[(θn− θ̂n)(θn− θ̂n)>] by the following
recursion

θ̂n+1 = Fnθ̂n +
FnvnXn

rLn
(Xn − X̂n)

X̂n+1 = θ̂>n+1Xn

vn+1 = FnvnF
>
n + HnH

>
n −

FnvnXn

rLn
X>n vnF

>
n

rLn+1 = X>n vn+1Xn + 1.

Notice that under the gaussian conditional assumption we have X̂n+1 = E[Xn+1 |
Fn, θ̂0,Ω0] and RLn+1 = σ2rLn = Var (Xn+1 | Fn+1, θ̂0,Ω0) when the arbitrary initial values

for θ̂0, and Ω0 are included in the filtration. Thus one can compute the QLik contrast
recursively as before.
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Assume that the state-space model is parametrized over some hyperparameters λ ∈ Rd.
Let θ̂0 be some starting coefficient corresponding to the (unique) most likely fit on the
observations, i.e. the usual OMS. The QLik contrast Ln is then approximated computed
recursively:

• Initialization: λ, θ̂0, Ω0 and L0 = 0

• New observation Xn:

1. Compute the innovation In(λ) = Xn − X̂n(λ),

2. Update the QLIK loss Ln(λ) = Ln−1(λ) + In(λ)2/σ2rLn (λ) + log(σ2rLn (λ)),

3. Compute the next linear prediction X̂n+1(λ) and the associated risk rLn+1(λ)
thanks to the Kalman’s recursion.

One can optimize the QLik contrast as before. Notice that λ should stay of dimension
relatively small.

6.4 Dynamical models

The common choice Ft = Ik is made in this prospect as it does not require any calibration.
It corresponds to the dynamical models used in Bayesian forecasting. The main step of
the Kalman’s recursion

θ̂n+1 = θ̂n +
vnXn

rLn
(Xn − X̂n)

coincides with a stochastic gradient algorithm. More precisely, if one consider the problem
of minimization of the quadratic loss

θ 7→ `t(θ) = (Xt − θTXt)
2

then one can use a stochastic gradient approach based where

∇θ`t(θ) = −2Xt(Xt − θTXt).

Then the recursion is

θ̂n+1 = θ̂n − µ∇θ`t(θ̂n) = θ̂n + 2λXt(Xt − θTXt)

where µ > 0 is an hyperparameter called the learning rate. One can identify the learning
rates of the Kalman filter as

1

σ2rLn
vn.

Thus, it is very flexible and reasonable to use. The hyperparameters λ = Diag(H) and
σ2 where and λ ∈ Rk is estimated thanks to the QMLE λ̂n computed as above and σ2 is
estimated by

σ̂2
n :=

1

n

n∑
t=1

(Xt − X̂t(λ̂n))2

rLt (λ̂n)
.



Part IV

Stability for stochastic recursions
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Chapter 7
Stability of non-linear recursions

7.1 Motivation

Non-linear models are popular because they exhibit a wider range of behaviors than the
linear ones. In many applications, some empirical facts are observed:

• The time series can be considered as stationary on some non too long period of
observation,

• The stationary marginal distribution exhibits heavy tails, and thus extremal events
appears that have much more importance than the usual average behavior,

• The extremal events appears in clusters, i.e. a few of them are observed consecutively
in time.

Take a stationary linear model with the moving average representation Xt =
∑

j ψt−jZj ,
(Zt) iid with ψ0 > ψj ≥ 0, j ∈ Z and (ψt) non negative and summable. The only way to
obtain an heavy tailed marginal distribution is to assume that the distribution of the Zt
is heavy tailed. Then, by independence, one of the Zt is much larger than the other, let
say Z0. in that case X0 ≈ ψ0Z0 and thus X1 ≈ ψ1Z0 ≈ ψ1/ψ0X0. Thus, the dependence
between X1 consecutively of an extremely large X0 is fixed. It means that if now Xt is the
maximum of the observations, then Xt+1 ≈ ψ1/ψ0Xt. If ψ1 > 0 a luster of 2 consecutive
extremes appears. But the relation between Xt and Xt+1 is deterministic given that Xt is
large, which is not realistic.

To obtain a better understanding of the clustering of the extremes, some nonlinearity
is required. One of the most popular model is the Stochastic Recurrent Equation (SRE)

Xt = AtXt−1 +Bt, t ∈ Z, (7.1)

with (At, Bt) iid. Applying the recurrence, one obtain approximatively that given X0 ex-
tremely large then X1 ≈ A1X0. Now the relationship between X1 and X0 given that X0 is
large is random and thus much wider than in linear models. It is then possible to capture
much more different cluster behavior with that simple SRE than with a linear model.

When talking about heavy tail and dependent extreme, the natural question of the
stability of the statistical inference is crucial. The normal condition, assuming that the
marginals are normally distributed, is no longer relevant as the gaussian distribution is not
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heavy tailed. Instead, we choose to focus here on the important concept of the conditional
gaussian distributions, meaning that a process exhibiting heavy tails can still be gaussian
distributed conditionally to the past. We will make the point clear later as it is crucial to
understand how the conditional normal condition does not exclude extremes and actually
most of the time generates extremes in a nice non-linear way. This second part of the
lecture notes focusses also on exhibiting statistical inferences that are likely to be stable to
the occurrence of extreme and in asserting the stability of those procedures. Non-linearity
is essential as we have seen that most of the efficient statistical procedures are not linear,
even if the models are.

7.2 Stability in statistics

In order to deal with the stability of statistical methods, one has to define some objects
on a parametric space Θ that is a compact set (closed and bounded) of Rd, d ≥ 1.

Definition. A loss function `n is a random element of C(Θ,R), the space of R valued con-
tinuous functions. The randomness of ` comes from the one of the observations X1, . . . , Xn.

We equip C(Θ,R) with the supremum norm ‖f‖∞ = maxΘ |f |.

Proposition. The space (C(Θ,R), ‖ · ‖∞) is a Banach space, i.e. a linear space on R that
is complete.

The interest of considering Banach spaces is that all the stability results from the
previous section extend to that setting. In particular, assume that (`t) is a sequence of
stationary and ergodic losses such that E[‖`0‖∞] <∞, then the SLLN holds

P
(

lim
∞

∥∥∥ 1

n

n∑
t=1

`t(θ)− E[`0](θ)
∥∥∥
∞

= 0
)

= 1.

Most of the estimator in statistics are constructed as follows: an unknown parameter θ0

satisfying E[`0(θ0)] = minΘE[`0(θ)] is approximated by the minimizer of the empirical
approximation of the asymptotic contrast E[`0]:

7.3 Random Iterated Lipschitz Maps

Before introducing the notion of stability useful in these notes, one needs to restrict our-
selves to sufficiently regular recursions.

Definition. A Lipschitz function φ on a metric space (E, d) has a finite Lipschitz coeffi-
cient

Λ(φ) := sup
x 6=y

d(φ(x), φ(y))

d(x, y)
<∞.

If the function φ is differentiable, the Lipschitz coefficient is an upper bound of the
norm of the first derivative. The Lipschitz property is very useful to ensure stability, even
in the deterministic case. Consider the fixed point problem x = φ(x) then

Theorem (Banach fixed point). Assume that (E, d) is complete (i.e. any Cauchy’s se-
quence converge) then there exists a unique fixed point x∗ = φ(x∗) when φ is contracting,
i.e. Λ(φ) < 1. Moreover x∗ is exponentially stable that for any x0 ∈ E it exists C > 0
such that the iterations xt+1 = φ(xt), t ≥ 0 satisfies

d(xt, x
∗) ≤ CΛ(φ)td(x0, x

∗)→ 0, t→∞.
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Notice that the contraction property is necessary. We want to generalize this result to
the stochastic case.

Definition. A sequence of Random Iterated Lipschitz Maps on (E, d) is defined as (φt)
such that their Lipschitz coefficients Λ(φt) are positive random variables a.s. finite. We
associate the forward recursion

xt+1 = φt+1(xt), t ≥ 0,

from an initial value x0 ∈ E. The random recursion has a solution if it exists a random
element xt that satisfies the forward-backward recursion

xt+1 = φt+1(xt), t ∈ Z.

The forward recursion is constructive and defined a random sequence (xt)t≥0 depending
on the initial value x0. In general, it does not provide a solution to the random recursion
that has to satisfy

xt = φt(xt−1) = φt ◦ · · · ◦ φt−n+1(xt−n) =: φ
(n)
t (xt−n),

for all n ≥ 0. In particular, the backward recurrence and the existence of a solution implies
that the limit exists a.s as n→∞.

Definition. The top-Lyapunov coefficient of a sequence of Random Iterated Lipschitz

Maps is defined as the limit of n−1 log(Λ(φ
(n)
t )) if it exists.

The existence of the top-Lyapunov coefficient is ensured by the following result:

Proposition (Kesten-Furstenberg). Assume that (φt) is a stationary ergodic sequence
such that E[log+(Λ(φ0))] <∞. Then

1

n
log(Λ(φ

(n)
0 ))→ inf

k≥1

E[log(Λ(φ
(k)
0 ))]

k
, a.s.

Proof. Notice that gn = log(Λ(φ
(n)
0 )) is a subbadditive sequence of functions of the sta-

tionary ergodic process (φt).

7.4 Exponential Almost Sure stability

The stability of the recursion will depend on the negativity of the top-Lyapunov coefficient

Theorem (Bougerol). Let (φt) be a stationary and ergodic sequence of Lipschitz maps on
a complete metric space E. Suppose that

(S1) it exists x ∈ E such that E[log+ d(φ0(x), x)] <∞, E[log+ Λ(φ0)] <∞,

(S2) the top-Lyapunov coefficient of the sequence is negative,

then the recursion xt = φt(xt−1), t ∈ Z admits a unique stationary ergodic solution and
admits the causal representation

xt = lim
n→∞

φ
(n)
t (y), t ∈ Z, y ∈ E.

Moreover, the recursion is EAS stable as any approximation x̂t = φt(x̂t−1), t ≥ 1 starting
from any arbitrary x̂0 is such that there exists γ > 1 satisfying

γtd(x̂t, xt)→ 0, a.s. (denoted d(x̂t, xt)
e.a.s.−−−→ 0).
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Proof. We show that (φ
(n)
0 (y)) converges under (S2). Let log ρ < 0 denotes the top-

Lyapunov coefficient. Under (S1), by the Borel-Cantelli Lemma we obtain

1

n
log+ d(φ−n(x), x)→n→∞ 0, a.s.

Thus we have

lim sup
n→∞

1

n
log d(φ

(n+1)
0 (x), φ

(n)
0 (x)) ≤ lim sup

n→∞

1

n
log Λ(φ

(n)
0 ) + lim sup

n→∞

1

n
log+ d(φ−n(x), x)

≤ log ρ.

since ρ < 1, the series (φ
(n)
0 (x)) satisfies the Cauchy criteria and converges. Then xt =

limn→∞ φ
(n)
t (x) is a causal stationary ergodic solution as xt = φt(limn→∞ φ

(n−1)
t−1 (x)) by

continuity.

By stationarity of the (φt) we also have x̂t = φ
(t)
t (x̂0) =d φ

(t)
0 (x̂0) so that

1

n
log(Λ(φ(n)

n ))→ log ρ, a.s.

So there exists a random N sufficiently large and C > 0 such that for n ≥ N Λ(φ
(n)
n ) ≤ Cρn

a.s.. As ρ < 1, we obtain

d(x̂t, xt) = d(φ
(t)
t (x̂0), φ

(t)
t (x0)) ≤ Λ(φ

(t)
t )d(x̂0, x0)

e.a.s−−−→ 0.

The uniqueness follows similarly.

Notice that (S1) is a very weak condition of moment and is applied by the existence
of moments of any order ε > 0 as small as possible because log+(x) ≤ xε, x > 0.

We can apply the EAS stability to linear models

Example. Consider the state-space model{
Xt = G′Yt +Wt, Space equation,

Yt = FYt−1 + Vt, State equation.

Assume that the WN (Vt) is stationary and ergodic. We want to apply Bougerol theorem

on the random state recursion φt(yt) = Fyt−1 +Vt, t ∈ Z. As E[‖V0‖2] <∞ and Λ(φ
(n)
0 ) =

‖Fn‖ deterministic, (S1) is satisfied. By Gelfand’s formula, ‖Fn‖1/n → ρ(F ) and the top-
Lyapunov coefficient is log(ρ(F )) It is negative when the spectral radius is smaller than
1, i.e. when the state-space model is stable. Thus, under very weak assumptions, a stable
state-space model is also EAS stable. Notice that the same holds automatically to the
corresponding observations (Xt).

The stability of the model implies that the model can be nicely simulated; any arbi-
trary initial values is forgotten exponentially fast in the simulation. However, it does not
guaranty the stability of the inference.
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7.5 Application to GARCH models

Let us detail the two different random recursions underlying the GARCH(1,1) models. The
recursion on the volatility is driven by the Lipschitz map φt(x) = ω0 + (α0Z

2
t−1 + β0)x.

It is an affine random function from (0,∞) to (0,∞). The non-completeness of the space
(think of the Cauchy sequence (1/n) tending to 0) can be solved by considering E =
[ω0/(1 − β0),∞). Notice that φt is a function of Zt−1 and the shift will explain the
predictability of the process.

The condition (S1) is satisfied as soon as Z0 has finite moments. The top Lya-
punov coefficients is E[log(α0Z

2
0 + β0)] by an application of the SLLN to the iid sequence

(log(α0Z
2
t + β0)). So (S2) coincides with the condition of stationarity

E[log(α0Z
2
0 + β0)] < 0.

We obtain the existence of a unique causal stationary solution EAS stable, even for heavy
tailed Z0 (actually the theorem also applies to any stationary ergodic (Zt)). It means that
knowing θ0 = (ω0, α0, β0)′, one can simulate the solution of the corresponding GARCH(1,1)
model starting from any initial value σ̂2

0 and using the recursion

σ̂2
t = ω0 + (α0Z

2
t−1 + β0)σ̂2

t−1.

It provides an EAS approximation of the volatility (and then of the stationary solution
X̂t = σ̂tZt).

One cannot use this random recursion to infer the GARCH(1,1) model for two reasons:
θ0 is unknown and Zt is not observed. Assume that the observations Xi, 1 ≤ i ≤ n, come
from a stationary ergodic time series (Xt). Let us use the inverted recursion

φθt (x) = ω + αX2
t−1 + βx

for any θ = (ω, α, β)′ ∈ Θ. Notice that now φθt is a function of the past observation Xt−1

and is then observed for 2 ≤ t ≤ n+ 1. Consider first the recursion on the complete space
[ω/(1−β),∞). The condition (S1) is satisfied under the existence of finite moments on the
observations. The top-Lyapunov coefficient is log β and one can apply Bougerol theorem
for any β < 1. In particular, we obtain that starting from any arbitrary initial value σ̂2

0(θ)
the volatility approximation

σ̂2
t (θ) = ω + αX2

t−1 + βσ̂2
t−1(θ)

gets exponentially fast close to some stationary ergodic volatility σ2
t (θ). Again from

Bougerol theorem, we know that this volatility process is the unique solution of the random
recursion and can be expressed as the limit of the backward recursion

σ2
t (θ) =

+∞∑
j=0

βj(ω + αX2
t−j−1), t ∈ Z.

Notice that σ2
t (θ) coincides with the volatility of (Xt) iff (Xt) is the solution of the

GARCH(1,1) model with parameter θ0 and θ = θ0 (the model is invertible). One can
check that actually in that case the inverted recursion is always stable as log(β0) <
E[log(α0Z

2
0 + β0)] < 0.

The inverted recursion of the stationary GARCH(1,1) model is exponentially stable so
that knowing θ0 one can predict the volatility starting from σ̂2

0(θ0) arbitrary and using the
recursion

σ̂2
t (θ0) = ω0 + α0X

2
t−1 + β0σ̂

2
t−1(θ0).
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We then have the approximation |σ̂2
t (θ0)− σ2

t |
e.a.s.−−−→ 0.

More generally, for GARCH(p, q) models where{
Xt = σtZt
σ2
t = ω0 + β0,1σ

2
t−1 + · · ·+ β0,pσ

2
t−p + α0,1X

2
t−1 + · · ·+ α0,qX

2
t−q

we have to consider a random recursion in Rp+q−1 with

φt(x) = At−1x+ (ω0, 0 . . . , 0)′, t ∈ Z

and

At =



α0,1Z
2
t + β0,1 β2 · · · · · · β0,p α0,2 · · · · · · α0,q

1 0 · · · · · · · · · · · · · · · · · · 0

0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · 0 1 0 · · · · · · · · · 0
Z2
t 0 · · · · · · 0 0 · · · · · · 0

0 · · · · · · · · · 0 1
. . .

...
...

. . .
. . .

. . .
...

0 · · · · · · · · · · · · · · · 0 1 0


.

The stationary solution will be (σ2
t , . . . , σ

2
t−p+1, X

2
t−1, . . . , X

2
t−q).

Theorem (Bougerol & Picard). The GARCH(p, q) model admits a unique stationary
ergodic non-anticipative solution iff the top-Lyapunov coefficient

log ρ = lim
n→∞

1

n
log ‖A1 · · ·An‖

is negative. Moreover, the model is EAS stable.

The condition that Zt is SWN is required for the identity σ2
t = Var (Xt | Xt−1, Xt−2 . . .).

The inverted recursion holds in Rp and is driven by

φθt (x) =


β1 · · · · · · · · · βp
1 0 · · · · · · 0

0
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 1 0

x+


ω + α1X

2
t−1 + · · ·+ αqX

2
t−q

0
...
...
0

 .

If the time series (Xt) is stationary ergodic, so is (φθt ) for any θ = (ω, α1, . . . , αp, β1, . . . , βq)
′ ∈

[0,∞)p+q+1. Moreover, the model is invertible as soon as the recursion is stable, i.e. when
the roots of the lag polynomial β(z) = 1−β1z−· · ·−βpz are outside the unit disc. However
notice that by positivity of the coefficients it is equivalent to

∑p
j=1 βj < 1. We have the

following proposition where α(z) = 1 + α1z + · · ·+ αpz
p:

Proposition. Under the stationary condition, the GARCH(p, q) model satisfies neces-
sarily

∑p
j=1 βj < 1. Then σ2

t = β−1
0 ◦ α0(T )X2

t−1 is a linear combination of the past
observations. Moreover, the recursion is EAS stable.

So if θ0 is known one can always predict the volatility of a GARCH model with a
recursion admitting an error decreasing exponentially fast to 0 regardless the initial value.
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7.6 Other volatility models

We extend the previous discussion to other stochastic volatility models of the form Xt =
σtZt with (Zt) iid centered and normalized so that σ2

t = Var (Xt | Xt−1, Xt−2, . . .). The
model will specify the dynamic of the volatility. We will distinguish two random recursions,
either or not inverted. We have to distinguish when the dynamic holds on σ2

t itself or on
log(σ2

t ).

7.6.1 Extension of GARCH models

A volatility model will be of GARCH type when the recursion holds on σ2
t

σ2
t = fθ0(σ2

t−1, · · · , σ2
t−p, X

2
t−1, . . . , X

2
t−q), t ∈ Z.

Such extension of the GARCH will be used to model two stylized facts: the possible
memory in the volatility by considering p large enough and the leverage effect, i.e. the
asymmetry of the response of the volatility to a large positive or negative observation.
The volatility should be more impacted by a negative observation.

All those models share with the GARCH one several features; the stationary solution
might exist under weak (but not tractable) assumptions. On the opposite, the stability of
the inverted recursion will easily follows from the dynamic above if fθ is a Lipschitz function
of its p first coordinates with Lipschitz constants Λ(fθ(, X

2
t−1, . . . , X

2
t−q))j , 1 ≤ j ≤ p,

satisfying (S2). One rough but explicit (and optimal in the deterministic case) is

p∑
j=1

max
θ∈Θ

Λ(fθ(·, X2
t−1, . . . , X

2
t−q))j ≤ ρ < 1, a.s.

Optimizing on a compact set Θ from an arbitrary positive initial value sufficiently far from
0, the QLIK approach produces reliable estimator θ̂n even if the model is misspecified, for
instance when the model corresponding to θ̂n does not have a stationary solution. However
the statistician can still use the stable recursion to compute σ̂2

t (θ̂n) and a reasonable
prediction σ̂2

n+1(θ̂n) of a risk measure of the second order. Moreover one can rely on the

residuals of the model Xt/σ̂
2
t (θ̂n) to do model adequacy diagnostic.

To quote a few of such models, TGARCH, APARCH, GJR-GARCH, GAS models,...

7.6.2 Log-GARCH models

A volatility model will be of the log-GARCH type when the recursion holds on log(σ2
t )

log(σ2
t ) = fθ0(log(σ2

t−1), · · · , log(σ2
t−p), X

2
t−1, . . . , X

2
t−q), t ∈ Z.

The Log-GARCH type models can model the same stylized facts than the GARCH type
models with out the constraint of positivity of fθ0 .

The most popular model of this type is the EGARCH model of Nelson. It is not
invertible and should be avoided for any practical purpose. Consider only the symmetric
EGARCH(1,1) case for simplicity

log(σ2
t ) = ω0 + β0 log(σ2

t−1) + α0Zt−1, t ∈ Z.

The model is a simple AR(1) on the log-volatilities and admits a stationary ergodic non-
anticipative solution for |β0| < 1. One invert the model plugging in the identity Zt−1 =

Xt−1e
− log(σ2

t−1)/2 and considering the recursion

φθt (x) = ω + βx+ αXt−1e
−x/2, t ≥ 1.
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The instability comes from the fact that the function x → e−x/2 is not Lipschitz on R as
the absolute value of the derivative |x|e−x/2 is not bounded when x → −∞. The model
is not stable and the arbitrary choice of the initial value log(σ̂2

t (θ)) impacts the QLIK
approach in a non predictable way (depending on the value and sign of the observations
Xt, multiplicative coefficients of the unstable exponential term). Worst, even if (Xt)
satisfies an EGARCH model with θ0 known, the inverted recursion does not provide any
good approximation of the volatility.

In order to circumvent the unstability the EGARCH representation, the simplest way is
to stabilize the inverted recursion. The Log-GARCH models follows an inverted recursion
of the form (considering the Log-GARCH(1,1) for simplicity)

φθt (x) = ω + βx+ α log(X2
t−1), t ≥ 1.

The inverted recursion is stable whenever |β| < 1 on E = R. The only drawback compared
with the GARCH case is that the volatility is not bounded away from 0 (i.e log(σ̂2

t (θ)) can
take possibly very large negative values). In order that the QLIK loss `t(θ) = log(σ̂2

t (θ))+
X2
t e
− log(σ̂2

t (θ))/2 is still integrable, one has to assume that the stationary ergodic time series
(Xt) is a.s. different from 0 so that E[| log(X2

0 )|]. The model is driven by the recursion

φt(x) = ω0 + (β0 + α0)x+ α0 log(Z2
t−1), t ∈ Z,

and a stationary solution exists when |β0+α0| < 1. The Log-GARCH models are extended
to the AS-Log-GARCH(p, q) models in order to capture the leverage effects. Actually, one
can show in general that

Proposition (Francq, Wintenberger & Zaköıan). The volatility of any EGARCH model
is a.s. equal to the volatility of an AS-Log-GARCH model. The converse is not true.

However, it is not true that the observations coincides as the SWN are different in
both representations. To conclude, the AS-Log-GARCH is preferable to infer than the
EGARCH model.

7.6.3 Stochastic Volatility models

The SV models are volatility models requiring an extra independent SWN (Z ′t). The most
common one provides the same dynamic than the EGARCH model replacing Zt by Z ′t

φt(x) = ω0 + β0x+ α0Z
′
t, t ∈ Z.

As Z ′t is independent of the past observations (Xt−1, Xt−2, . . .) it is an alternative way of
circumventing the unstability of the EGARCH model. However, the addition of an extra
SWN makes the inference more complicated as (Z ′t) are not observable and so is

log(σ2
t ) =

∞∑
j=1

βj0(ω0 + α0Z
′
t−j)

under the stationary condition |β0| < 1. The model is of Hidden Markov Chain type and
admits the state-space representation{

log(X2
t ) = log(σ2

t ) + log(Z2
t ), Space equation,

log(σ2
t ) = ω0 + β0 log(σ2

t−1) + α0Z
′
t, State equation.
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As the log x2 transform is a bijection on R+ only, this representation makes sense only
when the observations Xt are symmetric. Under this restrictive assumption, the inference
will be done using the QLIK contrast computed thanks to the Kalman’s recursion. The
stability of the procedure is studied in the next chapter. Finally notice that the state
space representation is always strongly misspecified as log(Z2

0 ) is far from being normally
distributed (usually the normal condition is reasonable on Z0 itself). It is a major drawback
of this approach and the AS-Log-GARCH is preferable to infer than the SV model in
practice.

7.7 Stability of state-space models

Definition. A state-space model with the state equation Yt = FYt−1 + Vt is stable iff
the spectral radius of F is smaller than 1: ρ(F) < 1.

It is indeed a notion of stability; By Gelfand formula we have

lim
k→∞

‖Fk‖1/k = ρ(F)

and so the the series (Fk) is absolutely convergent by the Cauchy criteria. Then, one can
apply the state space recursively and obtain

Yt =

k−1∑
j=0

FjVt−j + FkYt−k →
∞∑
j=0

FjVt−j .

There is a unique solution of the state equation that is a causal linear filter. Under the
gaussian assumption, it is also non-anticipative, stationary and ergodic. Moreover the
state Yt forgets its initial position Y0 exponentially fast.

Let us consider an ARMA model in his canonical state-space representation

Xt = (1, 0, . . . , 0)′Yt + Zt, Space equation,

Yt =


φ1 φ2 · · · φr

1 0 · · · 0
...

. . .
. . .

...

0 . . . 1 0

Yt−1 +


ψr
...
...

ψ1

Zt−1, State equation.

We rewrite the space equation as Yt = FYt−1 + HZt−1. Noticing that Vt = HZt−1 we
obtain

Yt =

∞∑
j=1

Fj−1HZt−j ,

so that

Xt = Zt +
∞∑
j=1

G′Fj−1HZt−j , t ∈ Z.

By unicity, it proves that under the stability condition, the (ψj) of the linear representation
of any ARMA process satisfies ψ0 = 1 and

ψj = G′Fj−1H, j ≥ 1.
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It proves that the ψj depends only on H and are geometrically decreasing.

The stability assumption is equivalent to the fact that all the eigenvalues of F are
inside the unit circle, i.e. that the characteristic polynomial det(λIr − F) has no root
outside the unit circle. In the ARMA case, one can compute explicitly the characteristic
polynomial λn−φ1λ

n−1−· · ·−φn = φ(λ−1)λn. Thus, it is equivalent that the polynomial
φ has no root inside the unit disc. We recognize the causal condition for ARMA processes.
However, it is not enough to ensure that ψj = 0 for j < 0. By a symmetric argument,
one also imposes that the polynomial γ does not have roots inside the unit circle so that
Zt = γ ◦φ(T )Xt. Then Xt is invertible under the gaussian assumption and the existence of
the ψj with ψj = 0 is ensured. In view of the condition of existence of a unique stationary
solution, we will always work under the slightly more restrictive condition

Definition (Hannan). The QMLE will be the minimizer of the QLIK contrast over the
set Θ that is the compactification of

{φ and γ do not have roots inside the unit circle and do not have common roots }.

Under the Hannan condition, the ψj are well-defined, they satisfy ψj = 0 for j < 0,

ψj −
∑

0<k≤j
φkψj−k = γj , 0 ≤ j ≤ r,

and ψj = G′Fj−1H for j > r (the recursive formula has been obtain through the identity
ψφ = γ).

We will see that those conditions on the unknown parameter θ are enough for proving
the consistency of the QMLE. We showed that they ensured the stability of the state-space
model. However, they do not ensure the stability of the Kalman’s recursion

Ωn+1 = FΩnF
′ + Q− FΩnG

G′ΩnG+R
G′ΩnF

′.

is much more complicated (i.e. non-linear) and does not have an explicit solution. Before
treating the stability of non-linear system in generality, let us introduce useful notions for
describing state-space models.



Chapter 8
Asymptotic properties of the QMLE under
continuous invertibility

8.1 Continuous invertibility

In practice θ0 remains unknown and one has to estimate it. From the stability of the
inverted recursion, we can construct an approximation of the QLIK loss called the inverted
QLIK loss ˆ̀

t(θ) = (Xt − X̂t(θ))
2/RLt (θ) + log(RLt (θ)) from arbitrary initial values. From

Pfanzagl theorem, the QMLE θn is strongly consistent if it is the minimizer of the QLIK
contrast Ln. However, one actually had to consider the inverted QLIK contrast L̂n =∑n

t=1
ˆ̀
t instead. Let us define

Definition. A model is continuously invertible if it is invertible and if the inverted QLIK
loss satisfies ‖ˆ̀t − `t‖∞

e.a.s.−−−→ 0 whatever is the arbitrary (continuous) choice of ˆ̀
0. It

implies that the inverted QLIK contrast L̂n is continuous and a minimizer over Θ is called
the QMLE and denoted θ̂n.

We then have the following consequence

Theorem (Wintenberger). Assume that (Xt) is a stationary ergodic time series. Assume
that the model is continuously invertible on Θ. Then the QMLE θ̂n is robust and strongly
convergent if Θ0 = {θ0}.

Bougerol theorem is useful to check the continuous invertibility condition.

Example. Consider the inverted recursion of the GARCH(1,1) model

φθt (x) = ω + αX2
t−1 + βx

on the space E = C(Θ, [ω,∞)), the complete space of continuous functions σ̂2
t from the

compact set Θ = [ω, ω̄] × [0, β̄] × [0, ᾱ] to [b = ω,∞). If the stationary ergodic time
series (Xt) has some finite moments then (S1) is satisfied. If β̄ < 1 then (S2) is satisfied
uniformly and Bougerol theorem applies. It provides the EAS stability uniformly over Θ
automatically and thus the continuous invertibility.

The same holds for the GARCH(p, q) model: as soon as the model is invertible, it is
continuously invertible on some compact set Θ. We are now ready to assert the strong
consistency of the QMLE:

75
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Theorem (Francq & Zaköıan). Assume that the GARCH(p,q) model is invertible on the
compact set Θ and that (Xt) is the stationary solution of the model for θ0 ∈ Θ such that
the top-Lyapunov is negative. Then the QMLE is strongly consistent if α0 and β0 do not
have common roots.

The last condition ensures the identifiability of the model, the model being regular by
assumption. We also obtain a similar result for ARMA(p,q) models:

Theorem. Assume that (Xt) is a stationary ergodic time series. Under the Hannan’s
condition on the compact set Θ for the ARMA model then the QMLE is robust and strongly
convergent if {θ0} = Θ0, in particular strongly consistent if (Xt) satisfies the ARMA model
with θ0 ∈ Θ and (Zt) SWN.

8.2 Inference in ARMA-GARCH models

One of the most common procedure is to fit an ARMA model on the observations and
then a volatility on the residuals if necessary. However, this two steps procedure (applying
two QMLE successively) should be replaced by the following one-step procedure. As soon
as the diagnostic on the residuals suggested some correlations in the squares (or in the
absolute values), if one seek at fitting a volatility model such as the GARCH(1,1) for
instance, one should consider the process

Xt = φ0,1Xt−1 + · · ·+ φ0,pXt−p + γ0,1εt−1 + · · ·+ γ0,qεt−p,

εt = σtZt, t ∈ Z
σ2
t = ω0 + β0σ

2
t−1 + α0ε

2
t−1.

Here (Zt) is SWN(1) and the unknown parameter

θ0 = (φ0,1, . . . , φ0,p, γ0,1, . . . , γ0,q, ω0, α0, β0)′ ∈ Rd, d = p+ q + 3,

is estimated by the QMLE minimizing L̂n(θ) =
∑n

t=1
ˆ̀
t(θ) computed recursively as follows:

Starting from arbitrary initial values, observing recursively Xt,

1. compute the innovation It(θ) = Xt − X̂t(θ) and the QLIK loss ˆ̀
t(θ) = log(σ̂2

t (θ)) +
It(θ)

2/σ̂2
t (θ),

2. update the variance of the WN σ̂2
t+1(θ) = ω + βσ̂2

t (θ) + αIt(θ)
2,

3. predict the next observation X̂t+1(θ) = φ1Xt + · · · + φpXt−p+1 + γ1It(θ) + · · · +
γqIt−p+1(θ).

This one-step QMLE is strongly consistent

Theorem (Francq & Zaköıan). If θ0 ∈ Θ satisfies the condition of stationarity of the
GARCH model, if any θ ∈ Θ satisfies the Hannan’s condition and β < 1, then the QMLE
is strongly consistent.

The one-step estimation is more robust to possibly heavy tailed observations as the
condition of finite second moments on (Zt) does not imply second finite moments on (εt)
and thus also on (Xt).

More generally, we have also the following corollary that holds in both volatility and
state-space models
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Corollary. Assume that (Xt) satisfies the stationary ergodic state-space model for θ0 ∈ Θ
with SWN (with E[X1 | X0, X−1, . . .] = 0). Then X̂n+1(θ̂n) and RLn+1(θ̂n) (or σ̂2

n+1(θ̂n))
are strongly consistent predictions of Πn(Xn+1) and RLn+1 or Var (Xn+1 | Xn, Xn−1, . . .),
regardless the arbitrary initial choices in the recursion.

It is very important for applications

1. Analysis of the residuals: Compute the residuals Ẑt = (Xt − X̂t(θ̂n))/

√
RLt (θ̂n) or

Ẑt = Xt/σ̂t(θ̂n). Then apply the diagnostic of the adequacy of the model and check
if the residuals are correlated, if the squares are correlated, if the gaussian assumption
is likely to hold,...

2. Quantitative prediction and risk management: After a positive diagnostic, the pre-

diction X̂n+1(θ̂n) and its risk RLn+1(θ̂n) can be used to construct intervals of predic-
tion. The range of the interval informs about the uncertainty degree of the prediction.
In finance, the volatility prediction σ̂t(θ̂n) is used as a quantitative measure of risks.

8.3 Asymptotic normality of the QMLE

The asymptotic normality of the QMLE follows in most of the cases under extra assump-
tions. Assume that Θ0 = {θ0} ⊂ Rd. If L̂n is sufficiently regular (2-times continuously
differentiable) then a Taylor expansion gives

∂θL̂n(θ̂n) = ∂θL̂n(θ0) + ∂2
θ L̂n(θ̃n)(θ̂n − θ0)

with θ̃n ∈ [θ0, θ̂n]. Notice that as θ̂n is strongly convergent, then [θ0, θ̂n] → {θ0} a.s.

Morreover, if θ̂n ∈
◦
Θ the interior of the compact set then ∂θL̂n(θ̂n) = 0 as the QMLE is

the minimizer of the QLIK contrast by assumption. So we have to study the properties of
the two first derivative of the contrast L̂n. Let us first show that the two first derivatives
of Ln have nice properties at θ0:

Definition. The score vector is defined as the gradient of the QLIK loss

St = −∇θ log(fθ0,t−1(Xt)).

The Fisher’s information is I(θ0) = E[∂2
θ (− log(fθ0,0(X1)))].

We have the following property, deriving from the definition of θ0 as the unique mini-
mizer of −E[log(fθ,0(X1)) | F0]:

Proposition. If θ0 ∈
◦
Θ the score vector is centered E[S1 | F0] = 0 and I(θ0) is a

symmetric definite positive matrix.

Thus the sequence of score vectors (St) constitutes a difference of martingale. Under
the gaussian assumption, when hθ(z,X0, X1, . . .) = Eθ[X1 | F0] +

√
Var θ(X1 | F0)z and

so we have a specific form of the score vector

S1 =
Var θ0(X1 | F0)− (X1 − Eθ0 [X1 | F0])2

Var θ0(X1 | F0)2
∇θVar θ0(X1 | F0)

+ 2
Eθ0 [X1 | F0]−X1

Var θ0(X1 | F0)
∇θEθ0 [X1 | F0]
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Under the assumption made above that the conditional distribution of X1 given F0 is
E[X1 | F0]+

√
Var (X1 | F0)Z1 for some misspecified Z1 and that the model is rich enough

to have Eθ0 [X1 | F0] = E[X1 | F0] and Var θ0(X1 | F0) = Var (X1 | F0), we rewrite the
score vector

S1 =
1− Z2

1

Var (X1 | F0)
∇θVar θ0(X1 | F0)− 2

Z1√
Var (X1 | F0)

∇θEθ0 [X1 | F0]

When the SWN (Zt) is centered and normalized one can check directly that (St) is a
martingale difference. We then compute, shortening the notation,

Var (S1) =(E[Z4
1 ]− 1)E

[
∇θVar θ0∇θVar ′θ0

Var 2
θ0

]
+ 4E

[∇θEθ0∇θE′θ0
Var θ0

]

− 2E[Z3
1 ]E

[
∇θVar θ0∇θE′θ0 +∇θEθ0∇θVar ′θ0

Var
3/2
θ0

]
.

Under the same assumptions, we have

I(θ0) = E

[
∇θVar θ0∇θVar ′θ0

Var 2
θ0

]
+ 2E

[∇θEθ0∇θE′θ0
Var θ0

]
.

We can check that the Fisher’s information is a symmetric definite positive matrix. We
obtain the identity Var (S1) = 2I(θ0) under the normal condition or more generally when
E[Z3

1 ] = 0 and E[Z4
1 ] = 3.

Those formulas apply on the asymptotic contrast for Ln and not the inverted L̂n.
However, we have

Definition. A model is C2-invertible on a compact set Θ if it is continuously invertible

on Θ and ∂θ ˆ̀
t is twice continuously differentiable on

◦
Θ such that ‖∂θ ˆ̀

t − ∂θ`t‖∞
e.a.s.−−−→ 0

and ‖∂2
θ

ˆ̀
t − ∂2

θ `t‖∞
e.a.s.−−−→ 0 on any compact subsets of

◦
Θ.

Models that are continuously invertible and regular are most of the time C2-invertible.
We then obtain the uniform approximations

1

n
‖L̂n − Ln‖∞

a.s.−−→ 0,
1√
n
‖∂θL̂n − ∂θLn‖∞

a.s.−−→ 0 and
1

n
‖∂2

θ L̂n − ∂2
θLn‖∞

a.s.−−→ 0.

We are now ready to state

Theorem. Assume that (Xt) is a stationary ergodic time series. If the model is C2-

invertible on a compact set Θ, if Θ0 = {θ0} ⊂
◦
Θ and Var (S1) < ∞ then the QMLE is

asymptotic normal

√
n(θ̂n − θ̂0)

d.−→ Nd(0, I(θ0)−1Var (S1)I(θ0)−1).

Proof. From the Taylor’s expansion

0 =
1√
n
∂θL̂n(θ0) +

1

n
∂2
θ L̂n(θ̃n)

√
n(θ̂n − θ0)



8.3. ASYMPTOTIC NORMALITY OF THE QMLE 79

The first term approximates a.s. 1√
n
∂θLn(θ0). It is the renormalized sum of the vector

scores on which we apply the CLT for martingale of Billingsley and we obtain

1√
n
∂θL̂n(θ0)

d.−→ Nd(0,Var (S1)).

On the other hand, the second term 1
n∂

2
θ L̂n(θ̃n) is an a.s. approximation of 1

n∂
2
θLn(θ̃n)

that converges to I(θ0) because θ̃n ∈ [θ0, θ̂n] → {θ0} and because Var (S1) < ∞ ensures
that I(θ0) <∞. Finally, we obtain the desired result by applying Slutsky Lemma.

The condition of moments Var (S1) <∞ is restrictive in terms of finite moments on (Zt)
and (Xt). In particular, it always requires that E[Z4

1 ] < ∞. If E[Z3
1 ] = 0 and E[Z4

1 ] = 3,
the asymptotic variance is 2I(θ0)−1. We recover the Cramer-Rao bound I(θ0)−1 up to a
factor 2 due to the dependence.

In the dependent case, it is in general difficult to assert the efficiency, i.e. the optimality
of the asymptotic variance. If one knows in advance the distribution of (Zt), it is always
more efficient to use it in the likelihood (whenever one can still compute it recursively).

For GARCH models, one can identify the Fisher’s information and we obtain

Theorem (Francq & Zaköıan). Assume that the GARCH(p,q) model is invertible on the

compact set Θ and that (Xt) is the stationary solution of the model for θ0 ∈
◦
Θ such that

the top-Lyapunov is negative. Then the QMLE is asymptotically normal if α0 and β0 do
not have common roots and E[Z4

1 ] <∞:

√
n(θ̂n − θ0)

d.−→ Np+q+1

(
0, (E[Z4

1 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)′

σ4
0(θ0)

]−1
)
.

Notice that one can always estimate the asymptotic variance thanks to the EAS stable
inverted recursions satisfied by σ2

0(θ̂n) and ∇θσ2
0(θ̂n) starting form arbitrary initial values.

One also needs to estimate E[Z4
1 ] thanks to the residuals.

For ARMA models, one can also identify the Fisher’s information and we obtain

Theorem (Hannan). Under the Hannan’s condition on the compact set Θ, (Zt) is SWN

and that (Xt) is the stationary solution of the model for θ0 ∈
◦
Θ then the QMLE is asymp-

totically normal

√
n(θ̂n − θ0)

d.−→ Np+q
(
0, σ2Var (AR1, . . . , ARp,MA1, . . . ,MAq)

−1
)

where (ARt) and (MAt) are the stationary AR(p) and AR(q) time series driven by the
coefficient θ0 and the same SWN(1) (Zt):

φ0(T )ARt = Zt, γ0(T )MAt = Zt, t ∈ Z.

Moreover, RLn+1 is a strongly consistent estimator of σ2.

Notice that the asymptotic variance (except σ2) is an explicit function of θ0. It can be
estimated by replacing θ0 by θ̂n in this explicit formula.

The unknown parameter µ0, ω0 and σ2
0 can be estimated under the normal condition

thanks to the general QMLE approach of Francq and Zaköıan for ARMA-GARCH models
described above. However, the estimation procedure of ω0 and σ2

0 is still stable in the unit
root case µ0 = 1:
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Theorem (Nielsen & Rabhek). The QMLE is strongly consistent and asymptotically nor-

mal on any compact set Θ ⊂ (0,∞)×[0,∞) when (Xt) is the solution of the SRE for θ0 ∈
◦
Θ

satisfying the stationary condition. Moreover the asymptotic variance is the Cramer-Rao
bound I(θ0)−1.

As in the iid case, the asymptotic variance can be estimated thanks to the second order
properties of the minimization routine; the QMLE is asymptotically normal even when
the stationary solution of the SRE does not have finite variance.



Chapter 9
Stability of the Kalman’s recursion

9.1 Controllability

The controllability is another notion describing the state-space model that depends only
on the state equation Yt = FYt−1 + Vt that we rewrite Yt = FYt−1 + Hηt where H is a
full rank matrix such that HH′ = Q

Definition. The state-space model is controllable iff for any two vectors A and B there
exists an integer k and values η1, . . . , ηk such that Y0 = A and Yk = B.

One says that the state can reach any possible value in finite time starting from any
other possible value. When the η are SWN, then the states Yt constitute a Markov
chain and the notion of controllability is related to irreducibility properties. The following
proposition provides a checkable equivalent definition

Proposition. The state space model is controllable iff the matrix

(H FH · · · Fr−1H)

has full rank r, the dimension of the state space model.

Controllability is an important notion because of the following result

Proposition. If the state-space model is not controllable then there exists another repre-
sentation of lower dimension that is controllable.

9.2 Observability

The observability notion relies on the state Xt satisfying{
Xt = G′Yt +Wt, Space equation,

Yt = FYt−1 + Vt, State equation.

Definition. The state-space model is observable iff the initial state Y0 can be completely
determined from all possible future observations X1, X2, . . . (n → ∞) when Wt = 0 and
Vt = 0.

The following proposition provides a checkable equivalent definition

81
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Proposition. The state space model is observable iff the matrix

(G FG · · · Fr−1G)

has full rank r, the dimension of the state space model.

Controllability is an important notion because of the following result

Proposition. If the state-space model is not observable then there exists another repre-
sentation of lower dimension that is observable.

We are now ready to state the Theorem showing the importance of those notions

Theorem. The state-space model is of minimal dimension iff it is controllable and ob-
servable.

One can check that the canonical representation of the ARMA model is actually min-
imal. It is crucial for the application of the Kalman’s recursion and the QLIK criteria,
proving that the whole procedure is relying on the sparsest possible representation. We
will also see that it is fundamental for the stability of the Kalman’s recursion (that does
not have to be mixed up with the stability of the state-space model).

9.3 Stability of the Kalman’s recursion

Consider the state space model{
Xt = G′Yt +Wt, Space equation,

Yt = FYt−1 + Vt, State equation.

where the variance R of the WN (Wt) is assumed to be 1. Let θ be the parameters
of the model determining G, F and Q. We want to assert the invertibility of the model
thanks to the EAS stability of the inverted recursion that coincides here with the Kalman’s
recursion. The stability of this random recursion depends only on the stability of the
Riccati’s equation

Ωn+1(θ) = FΩn(θ)F′ + Q− FΩn(θ)G

G′Ωn(θ)G+ 1
G′Ωn(θ)F′.

It is a deterministic recursion starting from Ω0(θ) arbitrary and driven by the non linear
transform

φθt (x) = FxF′ + Q− FxG

G′xG+ 1
G′xF′.

We have the following fundamental result:

Theorem (Kalman). The Kalman’s recursion is EAS stable iff the state-space model is
controllable and observable.

It implies that the state-space model has minimal dimension. As a corollary, we have
the continuous invertibility of the ARMA models with SWN.

Corollary. Under the Hannan’s condition, the canonical representation of the ARMA
model generates an EAS stable Kalman recursion.
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The EAS stability of the Kalman’s recursion is not implied by the invertibility of
the ARMA model only. It is because the state-space model representation requires the
condition of causality as any stable sate-space model admits a causal linear represen-
tation. Moreover, it implies that the state space representation is stable and also the
ARMA model. One excludes the explosive cases such as the (widely) invertible AR(1)
Xt = φXt−1 + Zt, t ∈ Z with |φ| > 1.

As the Riccati’s recursion is deterministic, we face a fixed point problem with a unique
solution Ω∗(θ) known as the steady state and satisfying

Ω∗(θ) = FΩ∗(θ)F′ + Q− FΩ∗(θ)G

G′Ω∗(θ)G+ 1
G′Ω∗(θ)F′.

The steady state can be approximated numerically and it is the best choice for the initial
value Ω0(θ) = Ω∗(θ). Indeed, we then ensure that Ωn(θ) = Ω∗(θ) for any n ≥ 0 saving
computation time in the Kalman’s recursion.

Notice that it is possible to have an EAS stable Kalman recursion for a state-space
model that is not stable. It is for instance the case of ARIMA processes (integrated
ARMA) that admits an unstable representation for which the Kalman’s recursion is still
EAS stable. Then, it is likely to use a non-informative a-priori, i.e. a value Ω0(θ) big such
that the first Ŷt(θ)s in the inverted recursion have large variances and explore different
states. The procedure will then stabilize by itself after some runs but cannot be stabilized
a priori and the steady state is not a good choice (Koopman).

9.4 Time varying coefficient stability

The stability of the inverted recursion will depend on weakened controllability and observ-
ability notions.

Definition. The state-space model with random coefficients is weakly controllable iff for
any two vectors A and B there exists an integer k and values η1, . . . , ηk such that Y0 = A
and Yk = B with some positive probability. It is weakly observable iff the initial state
Y0 can be determined with some positive probability from all possible future observations
X1, X2, . . . (n→∞) when Wt = 0 and ηt = 0, t ≥ 1.

Under weak controllability and stability the Kalman’s recursion is stable in a random
environment:

Theorem (Bougerol). The Kalman’s recursion is EAS stable if the state space model is
weakly controllable and observable and if Ft is an invertible random matrix for t ≥ 1.

It is a complete extension of the Kalman’s theorem with constant coefficients except the
invertibility assumption on the matrices Ft’s. Notice that the stability of the state-space
model is not required.

We also assume implicitly that they have finite log-moments. We can extend the
notions of stability, controllability and observability of the deterministic case:

Definition. The state space model with random coefficients is stable if the top-Lyapunov
coefficient

log(ρ) = lim
n→∞

1

n
log(‖F1 · · ·Fn‖)

is negative.
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Applying Bougerol theorem on the state equation, we obtain

Proposition (Bougerol). If the state-space model is stable, then it admits a unique sta-
tionary ergodic solution that is not anticipative.
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