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Chapter 1
Stationarity

We focus on discrete time processes (Xt)t∈Z where t refers to time and Xt is a random
variable (extensions to multivariate time series will also be considered hen possible). The
random sequence (Xt) is built upon a probability space (Ω,A,P). Observing (X1, . . . , Xn)
at times t = 1, . . . , n, the classical statistical issue is to predict the future at time n:
Xn+1, Xn+2, . . . . In order to do so, we proceed in two steps, first inferring the depen-
dence structure of the observations and second using the dependence structure in order to
construct a prediction.

Remark. To achieve the prediction objective, we have to assume a structure (a model) on
(Xt) so that the information contained in (X1, . . . , Xn) provides information on the future
values of the process. We use the concept of stationarity.

Definition 1. The (possibly multivariate) process (Xt) is strictly (or strongly) stationary
if for all k ∈ N, the joint distribution of (Xt, . . . , Xt+k) does not depend on t ∈ Z.

Hence, in order to forecast the future at time n, one can subsample (X1, . . . , Xn) in
blocks of length k and use the fact that (Xn−k, . . . , Xn+1) and (X1, . . . , Xk+2), (X2, . . . , Xk+3)
are identically distributed... On these blocks, the last value is observed so that one can
assert the predictive power of the prediction of the last value from the k first values.

If the process is not likely to be stationary, one cannot rely on the observations to
predict the future. In practice, one has to stationarize our observations first.

1.1 Data preprocessing

Let us assume that we observe data (Dt) indexed by the time t. Our aim is to find a
reasonable transformation Xt of the data Dt such that (Xt) can be likely stationary. We
will not discuss here potential preprocessing that are not specific to time series such as
missing values, outliers,...

Consider that we are in the univariate case, otherwise the following treatment applies to
each marginals independently. Most of the time series can be decomposed in three additive
parts:

Dt = f(t) + St +Xt, t ≥ 1, (1.1)

where f(t) is the trend part, i.e. a deterministic function f of the time t, St is a seasonal
part with period St+T = St for some period T and Xt is likely stationary. Of course the
decomposition is not unique and it is a hard work to identify each components.

3
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Figure 1.1: Econometrics data exhibiting an exponential (multiplicative) trend that turns
into a linear (additive) trend after log-transform

The additive form in (1.1) is completely artificial and chosen for its simplicity. For
some data as for economics time series, a multiplicative form is much more natural. A log
transformation is necessary to obtain the additional decomposition (1.1).

Example 1. For economics data, it is reasonable to take into account an exponential trend
from the inflation. For time period t = 1, . . . , n where the interest rate r is assumed to be
fixed, the nominal price Dt is actually the real (deflated) price Pt and the inflation:

Dt = Pte
rt, t = 1, . . . , n.

Due to the presence of the exponential trend, this data cannot be stationary. By applying
the log transform, we obtain

log(Dt) = log(Pt) + rt, t = 1, . . . , n.

The exponential trend is transformed in a linear one that we will treat hereafter. Figure 1
shows quarterly earnings per share for the U.S. company Johnson & Johnson from 1960 to
1980.

1.1.1 Differencing

Let us treat the trend part f(t) in the decomposition (1.1), assuming that the seasonality
part is null St ≡ 0, t ≥ 0. In what follows we will consider that f(t) is a polynomial of the
time t. The most common case is the one of linear trend as

f(t) = a0 + b0t, t ≥ 1,

where (a0, b0) are unknown coefficients. As a statistician, a natural approach is to treat
this term as a linear model

Dt = a+ bt+Xt, t ≥ 1.

Then (Xt) is estimated from the residuals of the linear regression It is not the good approach
as we will see on an example.

Example 2. Let us regress the price of chicken in cents on the unit of time from 2001 to
2016 (note that on such short periods economic prices can be reasonably linear trended as
the inflation ert ∼ 1 + rt when rt is small). Then Xt is taken as the residuals from the
linear regression, see Figure 2.
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Figure 1.2: Estimation of the stationary component in presence of a linear trend thanks to
linear regression on the time.

Let us introduce the important notion of filtration (Ft), which is a sequence of increasing
σ-algebras. The events in Ft represent the available information at time t. A natural way
to describe a filtration is to introduce a noise.

Definition 2. A Strong White Noise (SWN) is some independent and identically dis-
tributed (i.i.d.) sequence (Zt) observed at time t such that E[Z0] = 0 and Var (Z0) < +∞
(possibly multi-dimensional).

A SWN generates the natural filtration Ft = σ(Zt, Zt−1, . . . ). The prediction at time
n cannot use any information from the future Zn+1, Zn+2,... The SWN (Zt) is an unpre-
dictable sequence; for instance, the best prediction for Zn+1 for the quadratic risk given
the past is E[Zt | Zt−1, Zt−2, . . .] = 0. It corresponds to the classical i.i.d. setting studied
in any basic course in statistics. In such i.i.d. settings, more interesting problems than
prediction are usually treated (estimation and tests).

Let (Zt) be a SWN (usually not observed).

Definition 3. The process (Xt) is non-anticipative relatively to the SWN (Zt) if Xt ∈
σ(Zt, Zt−1, . . . ), t ≥ 1. The process (Xt) is invertible if Xt ∈ σ(Zt, Xt−1, . . . ), t ≥ 1.

Notice that an invertible process is non-anticipative. The invertibility is the most
important notion related to filtration in time series analysis. It means there is an incom-
pressible random error in the prediction of Xn+1 due to the lack of information Zn+1,
unknown and unpredictable at time n. It is fundamental to avoid degenerate situations
(and not reasonable in our random setting) where one can predict the future from past
observations. We say that the data are adapted to the filtration and respects the flow of
information.

Example 3 (2, continued). Assume that (Dt) is non-anticipative with respect to (Zt).
Estimating the coefficients (a0, b0) thanks to the linear regression on (D1, . . . , Dn), one
obtains coefficients (â0(D1, . . . , Dn), b̂0(D1, . . . , Dn)). Thus the residuals

X̂t = Dt − â0(D1, . . . , Dn)− b̂0(D1, . . . , Dn)t, 1 ≤ t ≤ n,

constitute an anticipative sequence because they depend on the future Ds and thus Zs for s >
t. Such preprocessing transformation does not respect the flow of information. It is likely
that (â0(D1, . . . , Dn) − b̂0(D1, . . . , Dn)t) overfits the data (D1, . . . , Dn). It usually biases
the predictive power analysis and requires additional care, usually treated via a penalization
procedure.
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Figure 1.3: A linear (additive) trend is removed thanks to differencing. The obtained time
series has a mean behavior constant in time but exhibits some heteroscedastic behavior,
i.e. a non constant variance.

Preprocessing that respects the flow of information are based on the difference operator:

Definition 4. The lag (or backshift) operator L is defined as L((Dt)) = (Dt−1) for any
data Dt, t ∈ Z. The difference operator ∆ = Id−L with Id the identity over RZ is defined
so that ∆Dt = Dt −Dt−1, t ≥ 1.

In our case Dt = a+ bt+Xt, applying the difference operator, we obtain

∆Dt = Dt −Dt−1 = b+ ∆Xt, t ≥ 1.

If (Xt) is stationary, then b+ ∆Xt is also stationary and applying the difference operator
stationarizes the linear trended data (Dt). Notice that the flow of information is preserved;
if (Dt) is non-anticipative with respect to SWN (Zt) so is (∆Dt).

Example 4 (1, continued). On economics data, the log transformed data log(Dt) =
log(Pt) + rt exhibit a linear trend. Applying the difference operator, we obtain ∆ log(Dt) =
log(Pt/Pt−1) + r which is reasonably stationary. Neglecting the influence of the interest
rate, one calls the obtained process Xt = ∆ log(Dt)(∗100) the log-ratios.

Example 5 (2, continued). We perform the difference operator on the chicken prices and
compare it with the residuals of the linear regression. The residuals of the linear regression
have a very smooth trajectory that seems simpler to predict than the difference ∆Dt, see
Figure 4. It is due to the use of future observations to calculate the residuals at any time
1 ≤ t ≤ n. The non respect of the flow of information may lead to overconfident predictions
and then overfitting.

The trend component f(t) can be much more complicated than a simple linear depen-
dence on time. We will treat any polynomial trend thanks to multiple differencing; consider
a polynomial trend of degree 2

Dt = a0 + b0t+ c0t
2 +Xt, t ≥ 1,

then, differencing once, we obtain a linear trend

∆Dt = b0 + c0(2t− 1) + ∆Xt = b0 − c0 + 2c0t+ ∆Xt, t ≥ 1.
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Figure 1.4: The differencing data are more variable then the residuals of the linear regres-
sion. There are also more reasonably stationary.

If (Xt) is stationary, so is (∆Xt) and we are back to the linear trended case and we
stationarize ∆Dt by differentiating:

∆(∆Dt) = ∆2Dt = Dt − 2Dt−1 +Dt−2 = 2c0 + ∆2Xt, t ≥ 1.

In this case (2c0 + ∆2Xt) corresponds to the stationarized version of (Dt). By a recursive
argument, we see that we can treat any polynomial trend by successive differencing. Suc-
cessive applications of the difference operator respect the arrow of the time. Moreover, it
is simple to come back to the orignal data Dt by the inverse operator, called integration:

∆Dt = Xt ⇐⇒ Dt = Dt−1 +Xt ,

(Dt) being called the integrated version of (Xt). Denoting Xt = ∆2Dt, assuming that it is
stationary so that we can construct a predictor X̂n+1 then

D̂n+1 = X̂n+1 + 2Dn −Dn−1.

Let us treat the seasonal part St in the decomposition (1.1), assuming that the trend
part is null f(t) = 0. Notice that in practice it is not a restriction; the previous discussion
on removing the trend part is extendable in presence of a seasonal component St 6= 0.
Thus, one can always assume that successive differencing of the data removed the trend
part and one applies the seasonality decomposition that follows.

As St+T = St, knowing the period T the seasonal coefficients (Sj)1≤j≤T are easily
estimated by the empirical mean

ŜkT+j =
T

n

∑
1≤t=kT+j≤n

Dt, 1 ≤ j ≤ T, 1 ≤ k ≤ n/T.

The preprocessing Dt − Ŝj for t = Tk+ j breaks the flow of information.. Thus, there is a
risk of overfitting and it should not be used.

Example 6 (Figure 6). Consider the quarterly occupancy rate of Hawaiian hotels from
2002 to 2016 (top left). There is a strong suspicion of a seasonality of period T = 4. Thus,
one can compute the 4 seasonal coefficients (top right). One can notice that the spring and
autumn coefficients are equals, thus one could suspect a shorter (preferable) period T = 2.
However, it is not the case as the winter and summer coefficients (the busy seasons) are
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Figure 1.5: The orignal data (Dt), the 4 seasonal coefficients (Ŝj)1≤j≤4, the seasonally
adjusted time series (Xt = Dt − St) and the differenced data (Xt = Dt −Dt−T ).

significantly different. The seasonally adjusted time series (Xt = Dt − St) (bottom left)
and the differenced data (Xt = Dt − Dt−T ) (bottom right) have similar patterns but the
differecing is less smooth.

Instead, we will use differencing:

Definition 5. The difference operator of order T is ∆T = Id− LT .

If (Dt) has a seasonal component of period T such that St = St+T then ∆TDt =
Dt −Dt−T = Xt −Xt−T = ∆TXt is stationary.

Moreover note that the differenced stationary time seriesDt = Xt is centered: E[∆Dt] =
E[∆Xt] = 0. Thus by applying an extra time the difference operator, one can always con-
sider that the pre-processed data are stationary and centered.

Differencing is very popular since the seminal work of Box and Jenkins (2011). It is a
pre-process widely used on time series. His first merit is to avoid any use of the future for
pre-processing the past and thus to reduce the risk of overfitting. Another merit is that we
have ∆T∆k = ∆k∆T thus the treatment of a polynomial trend and seasonal components
can be done in any order. The main drawback of this approach is that the determination
of k and T is made visually and not rigorously. Any preprocessing should be doe with
great care.

It seems that there is no limit in the differencing process: the more you difference
and the more you are likely stationary. However, there is a caveat. Consider for in-
stance one observes a SWN (Dt) in R with finite variance σ2. Then ∆Dt = Dt − Dt−1
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is also stationary, so it is tempting to erroneously difference the observations. However,
Var (∆Dt) = 2σ2 > Var (Dt) and the variance of the differencing process is larger than the
original one. More generally, preprocessing by successive differencing should stop when it
increases the variance, i.e. when Var (∆Xt) > Var (Xt). Then (Xt) is considered as the
stationary version of the data.

1.2 Second order stationarity

We consider now that the preprocessing has been applied and that (Xt) is reasonably
stationary and centered. Let us first consider that it is likely second order stationary
which implies some homoscedasticity (not a lot of extreme values).

Definition 6. The (possibly multivariate) time series (Xt) is second order stationary (or
weakly stationary) if E [Xt] and E

[
XtX

>
t+k

]
exist and do not depend on t, for all k ∈ N.

Remark. Strong stationarity combined with the existence of second order moments imply
second order stationarity.

1.2.1 Autocorrelations

Definition 7. Let (Xt) be a centered second order stationary process (univariate). We
define, for any h ∈ Z:

• the autocovariance function:

γX(h) = Cov (Xt, Xt+h) = Cov (X0, Xh) = E [X0Xh] ,

• the autocorrelation function:

ρX(h) = ρ (Xt, Xt+h) =
γX(h)

γX(0)
.

• The cross-covariance function:

γXY (h) = Cov (Xt, Yt+h) = E [X0Yh]

for (Yt) an auxiliary centered second order stationary process.

• The cross-correlation function:

ρXY (h) =
γXY (h)√
γX(0)γY (0)

for (Yt) an auxiliary centered second order stationary process.

The sequences (γX(h))h∈Z or (ρX(h))h∈Z completely determine the second order prop-
erties of a second order stationary process (Xt).

Remark.

• We can restrict ourselves to N, as ∀h ∈ Z, γX(h) = γX(−h).

• γX(0) = Var (Xt) and ρX(0) = 1.
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Figure 1.6: A trajectory and the corresponding ACF of a SWN and its squares

Example 7. If (Xt) is a SWN with X0 ∼ P , then (Xt) is stationary and (Xt, . . . , Xt+k) ∼
P⊗(k+1). Moreover γX(0) = Var (Xt) = σ2 exists and Xt is also weak-sense (second order)
stationary and γX(h) = 0 for h ≥ 1. We denote SWN(σ2).

Definition 8. A (weak) white noise is a second order stationary processus (Xt) such that:

µX = E[Xt] = 0 and γX(h) =

{
σ2 if h = 0
0 otherwise

We denote (Xt) ∈WN(σ2).

1.2.2 Linear time series

We have the following definition

Definition 9. A time series is linear if it can be written as the output of a linear filter
applied to a WN: let (Zt) be WN and (ψj) be a linear filter, i.e. a series of deterministic
coefficients such that

∑
j∈Z ψ

2
j < ∞, then Xt =

∑
j∈Z ψjZt−j, j ∈ Z, is a centered linear

time series.

We have to prove the existence of the infinite series
∑

j∈Z ψjZt−j . Actually, it derives
from the existence of second order moments which is a by-product of the following result:

Proposition. Let (Zt) be WN(σ2) and
∑

j∈Z ψ
2
j <∞, then Xt =

∑
j∈Z ψjZt−j, j ∈ Z, is

a second order stationary time series satisfying

γX(h) = σ2
∑
j

ψj+hψj .
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Proof. By bilinearity:

Cov (Xt+h, Xt) = Cov

∑
j

ψjZt−j+h,
∑
i

ψiZt−i


=
∑
j

∑
i

ψjψiCov (Zt+h−jZt−i)

=
∑
j

∑
i

ψjψiγZ (h− j + i)

=
∑
l

∑
j

ψj+l+hψjγZ(l)

= σ2
∑
j

ψj+hψj <∞

where the finiteness follows by Cauchy-Schwartz inequality. In particular

γX(0) = σ2
∑
j

ψ2
j = E

∑
j

ψjZt−j

2 <∞.
Moreover, by dominated convergence, the series

∑
|j|≥k ψjZt−j converges absolutely in L2

to Xt =
∑

j∈Z ψjZt−j that is finite a.s..

1.2.3 Hilbert spaces, projection and the Wold theorem

It is natural to consider projections in the Hilbert space L2(P) when studying second order
stationary time series (Xt). Let (Ω,A,P) be a probability space.

Definition 10. The set of all random variables X : Ω −→ R such that E[X2] =
∫

ΩX(w)2dP (w) <
+∞ is denoted by L2(P).

Definition 11. The inner product associated to ‖X‖ =
√
E[X2] is 〈X1, X2〉 = E[X1X2].

Proposition. 〈·, ·〉 has the following properties:

• Bilinearity: 〈αX1, βX2〉 = αβ〈X1, X2〉

• Symmetric: 〈X2, X1〉 = 〈X1, X2〉

• Non-negative: 〈X,X〉 ≥ 0 and 〈X,X〉 = 0 iff X = 0 a.s.

• ‖ · ‖ is a seminorm: ‖X1 +X2‖ ≤ ‖X1‖+ ‖X2‖ and ‖αX‖ = |α| ‖X‖.

Definition 12. We denote by L2(P) the quotient space L2(P)/ ∼ with X ∼ Y iff X = Y
a.s.

Proposition.
(
L2(P), || · ||

)
is a Hilbert space, a vector space such that the norm induced

by the inner product turns into a complete metric space.

Definition 13. Any X,Y ∈ L2(P) are orthogonal if < X,Y >= 0 and are denoted X ⊥ Y .
Two subsets F and G are orthogonal if X ⊥ Y for any X ∈ F and Y ∈ G.
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Theorem (Projection). Let L be a linear sub-space closed in L2(P). Then for any X ∈
L2(P) the minimizer of Y ∈ L → ‖X − Y ‖2 exists, is unique and is denoted PL(X).
Moreover PL(X) ∈ L and X − PL(X) ⊥ L and these 2 relations characterize completely
PL(X), the projection of X onto L.

Notice that by orthogonality we have the Pythagorean theorem: for Y ∈ L

‖X − Y ‖2 = ‖X − PL(X)‖2 + ‖PL(X)− Y ‖2.

The Projection theorem has nice probabilistic interpretations. For P being the distribu-
tion of the WN (Zt), we identify the second order stationary time series (Xt) as measurable
functions Xt ∈ L2(P). Moreover < X,Y >= E[XY ] = Cov(X,Y ) if X and Y are centered.
Thus, being orthogonal means being uncorrelated.

Let A0 be a sub-σ algebra of A and let L be the set of r.v. that are A0-measurable
and square integrable. Then L is a closed linear sub-space.

Definition 14. The projection PL(X) is called the conditional expectation of X on A0 and
is denoted PL(X) = E[X | A0].

When A0 is the σ algebra generated by some r.v. Y then we also write E[X | A0] =
E[X | Y ]. By the Theorem on the projection, we have that E[X | Y ] is square integrable
and that E[(X −E[X | Y ])h(Y )] = 0 for any measurable and square integrable function h.

1.2.4 Best linear prediction

Let X1, . . . , Xn be the n first observations of a second order stationary time series (Xt)
that is centered.

Definition 15. The best prediction at time n is Pn(Xn+1) = E[Xn+1 | Xn, . . . X1]. It is
the measurable function f of the observation minimizing the quadratic risk (of prediction)
Rn+1 = E[(Xn+1 − f(Xn, . . . , X1))2].

One can also think of the projection on the closed subset L of linear combinations of
X1, . . . , Xn called the span of the observations. One always has L ⊂ σ(X1, . . . , Xn) and
we define

Definition 16. The best linear prediction at time n is Πn(Xn+1) = PL(Xn+1). It is the
linear function f of the observation minimizing the quadratic risk (of prediction) RLn+1 =
E[(Xn+1 − f(Xn, . . . , X1))2].

By definition, one has RLn+1 ≥ Rn+1 and RLn ≥ RLn+1 because of the second order
stationarity and the linearity of f

RLn = E[(Xn+1 − f(Xn, . . . , X2))2].

Thus (RLn) is a converging sequence with non-negative limit denoted RL∞. Moreover
Πn(Xn+1) = θ1Xn + · · · + θnX1 and Cov(Xn+1 − Πn(Xn+1), Xk) = 0 for all 1 ≤ k ≤ n.
Actually, the two last properties completely determine the best linear prediction. We can
write down these equations in the matrix form, dividing by γX(0):

Definition 17. The system of n equations on the covariances defining the coefficients of
the best linear prediction is called the Yule-Walker system and it is equal to ρX(0) · · · ρX(n− 1)

...
. . .

...
ρX(n− 1) · · · ρX(0)


θ1

...
θn

 =

ρX(1)
...

ρX(n)
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Denoting X = (Xn, . . . , X1) one can write in a compact way the best linear predictor

Πn(Xn+1) = Xθ = XE[X>X]−1E[X>Xn+1].

The Yule-Walker method is based on the compact formula, requiring to invert a covariance
matrix at each step n. Other procedures can compute this explicit formula in an efficient
way, i.e. avoiding to invert the covariance matrix of the observations (X1, . . . , Xn)′.

The matrix of variance-covariance of the observation (ρX(i − j))1≤i,j≤n is a Toeplitz
symmetric semi-definite matrix with diagonal dominant terms 1. It is not definite only if
it exists a deterministic vector u 6= 0 in its kernel such that

0 = u>(γX(i− j))1≤i,j≤nu = E[u>XX>u] = E[(u>X)2] = 0,

where X = (X1, . . . , Xn)>. Thus u>X = 0 a.s. and Xn expresses as a linear combination
of the past values X1, . . . , Xn−1. In particular Πn−1(Xn) = Xn a.s. and RLn+k = 0 for
all k ≥ 0. More generally, in any cases where R∞ = 0 one says that the second order
stationary time series (Xt) is deterministic. For instance Xt = X for all t ∈ Z, where
X is a random variable, is deterministic. There are other example of deterministic (but
random) time series:

Example 8. Let A and B two random variables such that Var (A) = Var (B) = σ2,
E(A) = E(B) = 0 and Cov(A,B) = 0. Let λ ∈ R. We define the following trigonometric
sequence:

Xt = A cos(λt) +B sin(λt)

Then (Xt) is weak-sense stationary as µX = E(Xt) = 0 and

γX(h) = Cov (Xt, Xt+h)

= Cov [A cos (λt) +B sin (λt) , A cos (λ(t+ h)) +B sin (λ(t+ h))]

= cos (λt) cos (λ(t+ h))σ2 + sin (λt) sin (λ(t+ h))σ2

= σ2 cos(λh)

Although A and B are random variables, the process (Xt) is deterministic.

1.2.5 The innovations and the Wold theorem

Let us introduce the following notion

Definition 18. The innovation at time n is the error of linear prediction In = Xn −
Πn−1(Xn).

So, by definition the innovations are centered and their variances are equal to RLn . In
general, the innovations are not stationary as RLn decreases with n. We have the following
simple decomposition

Proposition. The linear projection Πn+1 can be decomposed into the sum of two projection

Πn+1 = Πn + PIn+1 , n ≥ 1,

where PIn+1 is the projection on the linear span of the innovation In+1.

Proof. The proof is based on the orthogonal decomposition of Ln+1 the linear span of
(X1, . . . , Xn+1) as the linear span Ln of (X1, . . . , Xn) and the linear span of In+1. Indeed,
by definition of In+1 ∈ Ln+1 we have In+1 ⊥ Ln. We conclude by a dimension argument,
as the dimension of Ln+1 is n+ 1 and so the orthogonal complement of Ln of dimension n
is a span of dimension 1.
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In particular the innovations (In) are uncorrelated.
Let us describe the asymptotic behaviour of the innovations. To do so, it is useful to

use a backward argument; one observes (X−1, . . . , X−n) and we try to predict X0 for all
n ≥ 1. We denote Π−n(X0) the corresponding best linear prediction. By second order
stationarity, we have

RLn = E[(X0 −Π−n(X0))2], n ≥ 1.

Moreover X0−Π−n(X0) is orthogonal to the span of (X−1, . . . , X−n). By orthogonality of
Π−n+k(X0) and Πn(X0) with Πn(X0)−X0 for 1 ≥ k ≥ n we have

E[(Π−n+k(X0)−Π−n(X0))2] = RLn−k +RLn + 2E[(Π−n+k(X0)−X0)(Π−n(X0)−X0)]

= RLn−k +RLn − 2E[X0(Π−n(X0)−X0)]

= RLn−k −RLn .

Thus as (RLn) is converging, it is a Cauchy sequence and so is (Π−n(X0)) in L2(P). Thus
Π−n(X0) converges and one denotes Π∞(X0) its limit. Defining I∞(X0) = X0 −Π∞(X0),
we have the identity

RL∞ = E[I∞(X0)2].

Defining Π∞(Xn) and I∞(Xn) thanks to the lag operator LnΠ∞(Xn) = Π∞(X0), one can
also check that

E[(In − I∞(Xn))2] = E[(Πn−1(Xn)−Π∞(Xn))2] = RLn −RL∞ → 0.

In particular (In − I∞(Xn)) converges in L2 to 0 and (In) converges in distribution to
I∞(X0). Let us use this concept of limit innovation I∞(Xn) in order to prove that any
second order stationary time series (Xt) is the sum of a linear time series and a deterministic
process:

Theorem (Wold). Let (Xt) be second order stationary. Then Xt is uniquely decompose as

Xt =
∑
j≥0

ψjI∞(Xt−j) + rt

where

• ψ0 = 1 and
∑

j≥0 ψ
2
j <∞,

• (I∞(Xt−j)) is a WN(RL∞),

• Cov(I∞(Xt), rs) = 0 for all t, s ∈ Z.

• (rt) is deterministic.

Proof. Let us show the 2 first assertions. By construction (I∞(Xt)) is a WN(RL∞). Let
define

ψj =
E[XtI∞(Xt−j)]

RL∞
.

Then ψ0 = 1 and
∑

j≥0 ψjI∞(Xt−j) is the orthogonal projection of Xt on the span of
(I∞(Xt−j))j≥0 by the use of the previous Proposition and a recursive argument. Thus
E[(
∑

j≥0 ψjI∞(Xt−j))
2] =

∑
j≥0 ψ

2
j <∞.

The Wolds’s representation motivates the following definition

Definition 19. The linear time series is causal iff ψj = 0, j < 0.

Remark that from Wold’s representation, any second order stationary time series that
has no deterministic component admits a causal linear representation.



Part II

Models and estimation
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Chapter 2
ARMA models

Assume that after preprocessing the data one obtains (Xt) that are second order stationary
without deterministic component: by Wold’s representation, (Xt) admits a causal linear
representation

Xt =
∑
j≥0

ψjZt−j , t ≥ 1,

where (Zt) is some WN(σ2) and
∑

j ψ
2
j <∞. This linear setting motivates the use of the

best linear prediction
Πn(Xn+1) = θ1Xn + · · ·+ θnX1

as the associated error of prediction In+1 = Xn+1 − Πn(Xn+1) =: In+1(Xn+1) converges
in distribution. Indeed In+1(X0) converges in L2 to Z0 that we identify as I∞(X0). As
the best linear prediction of a WN is 0, the WN is considered as linearly unpredictable and
σ2 = RL∞ is the smallest poxssible risk of prediction in our context.

However, it is not reasonable to try to estimate n coefficients from n observations
(X1, . . . , Xn) as θ = (θ1, . . . , θn) requires the knowledge of (ρX(h))0≤h≤n through the
Yule-Walker equation, and these correlations are unknown. Usually, one estimate the
autocorrelations empirically:

Definition 20. The empirical autocorrelation is defined as

ρ̂X(h) =

∑n−h
t=1 XtXt+h∑n

t=1X
2
t

, 0 ≤ h ≤ n− 1.

Notice that by definition, we have the following properties

• |ρ̂X(h)| ≤ 1 for the same reason than |ρX(h)| ≤ 1: Cauchy-Schwartz inequality,

• ρ̂X(h) is likely biased, i.e. E[ρ̂X(h)] 6= ρX(h).

In practice, one would like to test wether ρX(h) = 0 from the estimator ρ̂X(h). It is
possible under the strong assumption, uncheckable, that (Xt) is a SWN.

Theorem. If (Xt) is a SWN then ρ̂X(h) converges (a.s) to ρX(h) if h is fixed and n→∞
and in this case, for any h ≥ 1, we have

√
nρ̂X(h)

d.−→ N (0, 1).

17
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Proof. We want to apply the CLT on (XtXt+h). It has finite variance γX(0)2 because of
the independence assumption. Also (XtXt+h) is independent of (XsXs+h), s > t, except
for s = t+ h but then

Cov(XtXt+h, Xt+hXt+2h) = E[XtX
2
t+hXt+2h] = 0.

Thus one can prove that
√
nγ̂X(h)

d.−→ N (0, γX(0)2)

where γ̂X(h) = (n−h)−1
∑n−h

t=1 XtXt+h is the unbiased empirical estimator of γX(h). The
result also holds for h = 0:

√
n(γ̂X(0)− γX(0))

d.−→ N (0, γX(0)2)

which implies that γ̂X(0)
P.−→ γX(0). We conclude the proof applying Slutsky’s theorem.

The blue dotted band observed in Figure 1.2.1 corresponds to the interval ±1.96/
√
n.

If the coefficient γ̂X(h) is outside the band, one can reject with asymptotic confidence rate
95% the hypothesis that (Xt) is a strong white noise. The asymptotic is reasonable when
n− h is large because the correct normalisation should be

√
n− h in the result above and

not
√
n (asymptotically equivalent when h is fixed). On the contrary, there does not exists

any converging estimator of ρX(n − h) for any h fixed, even when n tends to infinity. (a
fortiori ρX(n) as we never observed data delayed by n).

As it is unrealistic to estimate n parameters from n observations, we will use a sparse
representation of the linear process (Xt):

Definition 21. An ARMA(p,q) time series is a solution (if it exists) of the model

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt + γ1Zt−1 + · · ·+ γqZt−q, t ∈ Z,

with θ = (φ1, . . . , φp, γ1, . . . , γq)
′ ∈ Rp+q the parameters of the model and (Zt) WN(σ2).

2.1 Moving Averages (MA time series)

The moving average is the simplest sparse representation of the infinite series in the causal
representation Xt =

∑
j≥0 ψjZt−j consisting in assuming ψj = 0 for j > q.

Definition 22. A MA(q), q ∈ N ∪ {∞} process is a solution to the equation:

Xt = Zt + γ1Zt−1 + · · ·+ γqZt−q, t ∈ Z.

Notice that we extend the notion to the cases where q = ∞ so that any causal linear
time series satisfies a MA(∞) model.

Example 9. Let (Zt) be a WN(σ2) and let γ ∈ R. Then Xt = Zt + γZt−1 is a first order
moving average, denoted by MA(1). (Xt) is second order stationary because E[Xt] = 0 and

γX(h) = Cov (Zt + γZt−1, Zt+h + γZt+h−1) =


(1 + γ2)σ2 if h = 0,

γσ2 if h = ±1,

0 else.

In general, we have the following very useful property
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Figure 2.1: A trajectory and the corresponding ACF of the solution of an MA(1) model

Proposition. If (Xt) satisfies a MA(q) model, we have γX(h) = 0 for all h > q.

Remark.

• Xt and Xs are uncorrelated as soon as |t− s| ≥ q + 1.

• If Zt is a SWN(σ2), then (Xt) is stationary.

• More precisely, a MA(q) model is a q-dependent stationary time series when (Zt) is
SNW: Xt and Xs are independent as soon as |t− s| ≥ q + 1 .

As shown in Figure 2.1, the uncorrelated property is used in practice to estimate the
order q of an MA(q); corresponding to the last component which is significantly non-null,
i.e. outside the blue confident band (only valid if (Zt) is a SWN).

2.2 Auto-Regressive models (AR time series)

The second sparse representation is the AR(p) model.

Definition 23. The time series (Xt) satisfies an AR(p) model, p ∈ N ∪ {∞}, iff it is
solution of the equation

Xt = φ1Xt−1 + · · ·+ φpXt−p + Zt, t ∈ Z.

It is not sure that it represents a causal linear time series.

Example 10. Let (Zt) be a WN(σ2) and Xt = φXt−1 +Zt, for t ∈ Z (AR(1) process). As
we have no initial condition the recurrence equation does not ensure the existence of (Xt).
If |φ| < 1, then by iterating the equation we get:

Xt = φkXt−k + φk−1Zt−k−1 + · · ·+ φZt−1 + Zt

If a second order stationary solution (Xt) exists, then:

E
[(
φkXt−k

)2
]

= φ2kE
[
X2

0

]
−→
k→+∞

0 .
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AR(1)   φ = + 0.9
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Figure 2.2: A trajectory and the corresponding ACF and PACF of the solution of an
AR(1) model

A solution admits a MA(∞) representation:

Xt =
+∞∑
j=0

φjZt−j

which exists as
∑+∞

j=0 |φj |2 < ∞. We easily check that this representation satisfies Xt =

φXt−1 + Zt. Remark that γX(0) = σ2/(1− φ2) and that ρX(h) = φh, h ≥ 0.

Remark. If φ = 1, by iterating we get the random walk Xt = X0 + Z1 + · · · + Zt and
Var (Xt −X0) = tσ2 −→

t→+∞
+∞ so the random walk is not second order stationary. This

course is restricted to the stationary case as the random walk can be preprocessed thanks to
differencing.

We saw that for a MA(1) process, γX(h) = 0 for h ≥ 2. Here we always have γX(h) 6= 0,
h ≥ 0 see Figure 2.2. Thus, it is not possible to use the ACF to infer the order p of an
AR(p) model.

The notion for inferring the order of auto-regression is the partial autocorrelation

Definition 24. The partial autocorrelation of order h is defined as (under the convention
Π0(X1) = 0)

ρ̃X(h) = ρX(X0 −Πh−1(X0), Xh −Πh−1(Xh)), h ≥ 1

where Πh−1(X0) is the projection of X0 on the linear span of (X1, . . . , Xh−1).

By definition ρ̃X(1) = ρX(1). The partial autocorrelations are used to determine
graphically the order of an AR(p) model. Indeed, we have

Proposition. The PACF of a causal AR(p) model (a solution with the expression
∑

j≥0 ψjZt−j
exists) satisfies ρ̃X(h) = 0 for all h > p .

Proof. Indeed, for an AR(p) time series we have Πh−1(Xh) = φ1Xh−1 + · · · + φpXh−p so
that

ρ̃X(h) = ρX(X0 −Πh−1(X0), Zh) = 0, h > p.

Fortunately, the PACF can be estimated from the Yule-Walker equation using only the
h first empirical estimators of the correlations ρ̂X(i) for 1 ≤ i ≤ h.
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2.3 Existence of a causal second order stationary solution of
an ARMA model

As for the AR(1) model, some conditions have to be done on the coefficients of the autore-
gressive part such that the solution can be written as a linear filter

Xt =
∑
j

ψjZt−j , t ∈ Z.

Recall that L defines the lag operator such that LXt = Xt−1 and LkXt = Xt−k. One can
now rewrite the ARMA model in a compact form

φ(L)Xt = γ(L)Zt ,

where (Zt) is a WN(σ2) and the lag polynomials

φ(z) = 1− φ1z − · · · − φpzp,
γ(z) = 1 + γ1z + · · ·+ γqz

q, z ∈ C.

We need to use complex analysis to solve the equation φ(L)Xt = γ(L)Zt as Xt =
γ(L)/φ(L)Zt = ψ(L)Zt.

Definition 25. A Laurent series is a function C 7→ C that can be written as ψ(z) =
∑
ψjz

j

where the range of the summation is j ∈ Z.

If
∑
|ψj | <∞, as

∑
ψ2
j <∞ then ψ(L)Zt is a linear time series. The behavior of the

Laurent series on S = {z ∈ C, |z| = 1} is crucial for the analysis of the existence of a filter.

Proposition. 1. Assume that
∑
|ψ1,j | <∞ and

∑
|ψ2,j | <∞. Then the series ψi(z) =∑

j∈Z ψi,jz
j are well defined on S and

ψ1(z)ψ2(z) = ψ2(z)ψ1(z) =
∑
k∈Z

∑
j∈Z

ψ1,jψ2,k−jz
k

is also well defined on S,

2. On the converse, if ψ(z) is defined on any enlargement of S then
∑
|ψ1,j | <∞.

We are now ready to state

Theorem. If φ do not have roots on S then the ARMA model admits a solution

Xt =
γ(L)

φ(L)
Zt = ψ(L)Zt, t ∈ Z

and (Xt) is a causal linear time series.

Recall the notion of causality, meaning here that the process (Xt) is a linear transfor-
mation of the past WN (Zt, Zt−1, . . .). Here, it is equivalent to assert that ψj = 0 for j < 0
and so that the Laurent series is defined on D = {z ∈ C, |z| ≤ 1} since any factor |z|j ,
j < 0, diverges when |z| → 0. As ψ(z) = γ(z)/φ(z) should be defined on D, it means that
φ does not have roots inside D. So we have the following result

Proposition. The solution of an ARMA model is
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1. causal iff φ does not have roots inside D, then Xt admits a Wold representation∑
j≥0 ψjZt−j and the WN Zt are the limit innovations,

2. (linearly) invertible, i.e. Xt =
∑∞

j=1 ϕjXt−j + Zt iff γ does not have roots inside
D. In particular Π∞(Xt) =

∑∞
j=1 ϕjXt−j, t ∈ Z as soon as (Xt) is second order

stationary.

Proof. We only prove the sufficiency assertion.

Let z1, . . . , zp the roots of φ (in C). They are non null since φ(0) = 1. We can write

φ(z) =

p∏
i=1

(1− z−1
i z)

Thus, assuming the roots are simple for simplicity, we get the partial fraction decomposition

1

φ(z)
=

1∏p
i=1(1− z−1

i z)

=

p∑
i=1

ai

(1− z−1
i z)

=

p∑
i=1

ai

∞∑
j=0

(z−1
i z)j

=

∞∑
j=0

( p∑
i=1

ai(z
−j
i

)
zj

It is a Laurent series with positive coefficients only and defined over an enlargement of D
for any |z| ≤ |zi|, 1 ≤ i ≤ p. Since γ(z) has only positive coefficients and defined on C, the
product ψ(z) = γ(z)/φ(z) has also positive coefficients and is defined on an enlargement
of D. In particular ψ(L)Zt is a causal linear filter.

The second assertion holds for the same reason than the first one as ϕ(z) = 1 −
γ(z)−1φ(z) satisfying ϕ(0) = ϕ0 = 0.

Moreover, since ψ and ϕ are necessarily defined on an enlargement of D, we also have

Proposition. If the ARMA model is causal or invertible then there exists C > 0 and
0, ρ < 1 so that |ψj | ≤ Cρj or |ϕj | ≤ Cρj, respectively.

In particular, an ARMA process is a sparse representation of a linear model that models
only exponential decaying auto-covariance processes because γX(h) = σ2

∑∞
j=0 ψjψj+h =

O(ρj).
Despite potentially infinitely many non-null correlations, (Xt) is said to be (short mem-

ory) weakly dependent because |γX(h)| −→
k→+∞

0 and the decrease is exponential:

∃c > 0, ρ ∈ ]0, 1[ , ∀h ∈ N, |γX(h)| < cρh

There are long memory processes (or strongly dependent): |γX(h)| ∼ h−a, a > 1/2.

Example 11. Any ARMA(p, q) model has auto-correlations that will ultimately decrease
to 0 exponentially fast.
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Figure 2.3: A trajectory and the corresponding ACF and PACF of the solution of an
ARMA(1,1) model with φ1 = γ1 = 0.9.
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Figure 2.4: A trajectory and the corresponding ACF of the solution of an ARMA(1,1)
model with φ1 = −γ1 = 0.9

Notice that the ARMA(p, q) representation faces the following problem of sparsity,
when pq 6= 0; if there is a common root for the two polynomials φ and γ, let us say z0 with
|z0| 6= 1, then (z0 − L) is inveritble and the ARMA(p− 1, q − 1) model

(1− z−1
0 L)−1φ(L)Xt = (1− z−1

0 L)−1γ(L)Zt

defines the same linear time series than the original ARMA(p, q) model. This problem is
crucial in statistics as the ACF or the PACF do not yield any information on how to choose
the orders p and q.

Example 12. An ARMA(1, 1) with φ1 = −γ1 is equivalent to a WN. To see this, one
checks that the root of the polynomial φ(z) = 1 − φ1z is the same than the root of γ(z) =
1 + γ1z.

To solve this issue, one uses penalized Quasi Maximum Likelihood approach.
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Chapter 3
Quasi Maximum Likelihood for ARMA
models

The estimation of the parameter θ = (φ1, . . . , φp, γ1, . . . , γq) ∈ Rp+q will be done following
the Maximum Likelihood principle. The important concept is the likelihood, i.e. the
density of the fθ of the sample (X1(θ), . . . , Xn(θ)) that follows the ARMA(p, q) model
with the corresponding θ ∈ Rp+q.

Definition 26. The log-likelihood Ln(θ) is defined as

Ln(θ) = −2 log(fθ(X1, . . . , Xn)).

The Quasi-Likelihood criterion (QLik) is the log-likelihood when the WN (Zt) of the model
(X1(θ), . . . , Xn(θ)), is gaussian WN(σ2). The Quasi Maximum Likelihood Estimator (QMLE)
satisfies

θ̂n = arg min
θ∈Θ

Ln(θ),

for some admissible parameter region Θ ⊂ Rp+q.

The concept of QLik is fundamental in these notes. As we will see, the gaussian
assumption on (Zt) is made for the ease of calculating the criterion. It is not the Likelihood,
i.e. we do not believe that the observations (Xt) satisfies the ARMA(p, q) model with
gaussian noise. It is a convenient way to define a contrast Ln to minimize on Θ. Notice that
we do not consider the variance of the noise of the model σ2 as an unknown parameter. The
procedure will automatically provide an estimator of this variance, as an explicit function
of the QMLE θ̂n.

3.1 The QML Estimator

3.1.1 Gaussian distribution

Definition 27. A random variable N is gaussian standard if its density is equal to (2π)−1/2ex
2/2,

x ∈ R. We will denote the distribution N (0, 1).

Then X is symmetric, E[X] = 0 and Var (X) = 1.

Definition 28. A random variable X ∼ N (µ, σ2), µ ∈ R and σ > 0, if there exists
N ∼ N (0, 1) such that X = µ+ σN in distribution.

25
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Then E[X] = µ and Var (X) = σ2 and

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R.

Definition 29. Let Xk ∼ N (0, 1), 1 ≤ k ≤ n, be iid. Then, for any U ∈ Rn, any Σ a
n× n symmetric matrix definite positive, the vector

Y = U + Σ1/2(X1, . . . , Xn)′ in distribution

is distributed as Nd(U,Σ), the gaussian distribution of dimension d with mean U and
variance Σ.

Notice that Σ1/2 is the square root of Σ, i.e. the only symmetric definite positive matrix
A such that A2 = Σ. The fundamental result about gaussian random vector is the following

Proposition. Let Y be a d-dimensional Gaussian random vector that is centered then
E[YiYj ] = 0, i.e. Yi ⊥ Yj for i 6= j is equivalent to Yi independent of Yj and

E[Yi|Yi−1, . . . , Y1] ∈ span(Yi−1, . . . , Y1), 1 ≤ i ≤ d .

The proof is based on a characteristic functions argument. That Yi and Yj are gaussian
centered r.v. is not enough, consider the case Yi = εYj with P(ε = ±1) = 2−1 and ε
independent of Yj .

The proposition has several consequences. In particular, one deduces that for centered
observations X1, . . . , Xn constituting a gaussian vector then Pj = Πj , i.e. the conditional
expectation is equal to the orthogonal projection.

3.1.2 The QLik loss

The Quasi-Likelihood loss for an ARMA model is computed in the following way. Consider
the parameter θ of the ARMA(p, q) model as fixed. One wants to compute the density
of the model (X1(θ), . . . , Xn(θ)) that are not independent random variables. Thus, the
density is not a priori a product. However, we always have

fθ(x1, . . . , xn) =

n∏
t=1

fθ(xt | xt−1, . . . , x1)

where fθ(xt | xt−1, . . . , x1) is the density of the distribution ofXt(θ) givenXt−1(θ), . . . , X1(θ).
Under the gaussian assumption, we have

Proposition. If θ corresponds to a causal ARMA(p, q) model then the distribution of Xt(θ)
given Xt−1(θ), . . . , X1(θ) is

N (Πt−1(Xt(θ)), R
L
t (θ)), t ≥ 1

with the conventions Π0(Xt(θ)) = 0 and RLt (θ) = E[(Xt(θ)−Πt−1(Xt(θ)))
2].

Proof. From the causal assumption, (Xt(θ)) is a linear function of (Zt). Thus all the
distributions of (Xt+1(θ), . . . , Xt+h(θ)) for any t ∈ Z and h ≥ 1 are gaussian. one says
that (Xt(θ)) is a guassian process. In particular the conditional distribution of Xt(θ) given
Xt−1(θ), . . . , X1(θ) is gaussian. One has to compute the conditional expectation and the
conditional variance. We already know that the conditional expectation coincides with
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the best linear predictor Πt−1(Xt(θ)). Moreover, we have that the corresponding error of
prediction Xt(θ) − Πt−1(Xt(θ)) is orthognal to the past (Xt−1(θ), . . . , X1(θ)). Thus, it is
independent and the conditional variance

Var (Xt(θ) | Xt−1(θ), . . . , X1(θ)) = E[(Xt(θ)−Πt−1(Xt(θ)))
2 | Xt−1(θ), . . . , X1(θ)]

= E[(Xt(θ)−Πt−1(Xt(θ)))
2]

= RLt (θ).

By definition, Πt−1(Xt(θ)) is a linear function of the past Xt−1(θ), . . . , X1(θ) depending
only on θ. Let us denote by Πt−1(θ)(xt) the same function expresses on xt−1, . . . , x1. Then
the density of the model expresses as

fθ(x1, . . . , xn) =

n∏
t=1

1√
2πRLt (θ)

e−(xt−Πt−1(θ)(xt))2/RLt (θ).

The QLik criterion has the nice additive form, up to a constant

Ln(θ) =

n∑
t=1

log(RLt (θ)) +
(Xt −Πt−1(θ)(Xt))

2

RLt (θ)
+ cst.

Note that Πt−1(θ)(Xt) 6= Πt−1(Xt(θ)) as the first expression uses the observations, the
second one the solutions of an ARMA model with parameter θ. In the sequel, we will
denote for short the innovation of the ARMA model on the observations as

It(θ) = Xt −Πt−1(θ)(Xt).

Minimizing this criterion over the set of any possible causal models Θ, we obtain the
QMLE.

3.1.3 The QMLE as an M-estimator

The QMLE is an estimator defined as the minimizer of the QLik. There is a vast literature
on such class of estimators, called M-estimator.

Definition 30. An M -estimator is a parameter θ̂n satisfying

θ̃n ∈ arg min
Θ
Ln(θ) = arg min

Θ

n∑
t=1

1

n
`t(θ).

The (random) functions `t are called the loss functions. and Ln is the contrast or cu-
mulative loss function. The set of parameters Θ has to be chosen carefully. One convenient
(and safe) way is to choose it as a compact set so that continuity of the loss functions yields
the existence of the M -estimator.

Avoiding for a moment the difficult problem of calculating efficiently (Πt(θ)) and
(RLt (θ)) (i.e. assuming they are known), the QMLE is an M -estimator with

`t(θ) = −2 log(fθ(Xt | Xt−1, . . . , X1)) + cst = log(RLt (θ)) +
(Xt −Πt−1(θ)(Xt))

2

RLt (θ)
.

In order to deal with the convergence ofM -estimator in non iid settings such as time series
we need a generalization of the SLLN called the ergodic theorem.
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3.1.4 Stationary ergodic time series

Stability in a stochastic setting refers to many notions. We remind here the main stability
notion: the ergodicity. Recall that L denotes the lag operator LXt = Xt−1.

Definition 31. A set C of RZ is invariant iff L−1C = C and the stationary time series
(Xt) is ergodic iff for all invariant sets P((Xt) ∈ C) = 0 or P((Xt) ∈ C) = 1.

Ergodicity is a notion of stability because of the following theorem

Theorem (Birkhoff). If (Xt) is an ergodic time series and f is a measurable function such
that E[|f((Xt))|] <∞ then:

1

n

n∑
i=1

f((Xi+t))→ E[f((Xt))] a.s.

Note that we average a function of the complete sequence (Xt) as required in the
applications: In particular, it implies a generalization of the Strong Law of Large Numbers
under integrability

1

n

n∑
i=1

Xi → E[X0] a.s.

Here the stability corresponds to the fact that averaging through time of a constant func-
tion of the observations converges to a constant.

In order to apply this powerful result, one needs to exhibit stationary and ergodic time
series.

Proposition. Let (Zt) be an iid sequence, then (Zt) is stationary and ergodic

It is a consequence of the zero-one law of Kolmogorov. From this basic example, it is
possible to construct other examples that are useful.

Proposition. If h is a measurable function and if (Zt) is a stationary and ergodic sequence
then Xi = h((Zi+t)) constitutes a stationary ergodic sequence.

Thus, any linear filter of a SWN is a stationary ergodic time series when it exists. Thus
it is the case of any solution of an ARMA model.

Combining the ergodic theorem above and the definition of the M -estimator, one can
actually prove that the estimator is converging to θ0 the minimizer of the risk function
E[`0]. Denote x ∨ 0 = x−:

Theorem ( Pfanzagl (1973)). Assume that (`t) is a stationary ergodic sequence of losses,
that θ0 is the unique minimizer of E[`0] and that it exists ε > 0 small enough such that

E
[

inf
θ∈B(θ0,ε)

`−0 (θ)
]
> −∞

then θ̂n → θ0 a.s., i.e. the M -estimator of θ0 is strongly consistent.
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3.2 Consistency of the QMLE

3.2.1 Strong consistency of the QMLE

In the case of the QLik approach, when θ corresponds to a causal and invertible ARMA
model, one identifies the loss functions with

`t(θ) = log(RLt (θ)) +
(Xt −Πt−1(θ)(Xt))

2

RLt (θ)
.

This function is not stationary and ergodic since it depends on an increasing number of
past data (Xt−1, . . . , X1). We will use the following approximation result from Straumann

Proposition. If (fn) is a sequence of measurable functions: fn : RZ → R such that
(fn(Zt, Zt−1, . . .)) converge a.s. for some t ∈ Z, then it exists a measurable function f such
that

f̃t = lim
n→∞

fn(Zt, Zt−1, . . .) = f(Zt, Zt−1, . . .), t ∈ Z

and (f̃t) is stationary ergodic.

The first term in `t will converge by continuity as (RLt (θ)) is converging to RL∞(θ) = σ2.
For the second term, it depends on the convergence of (Πt−1(θ)(Xt)). We already know

that (Πt−1(Xt(θ))) is converging. If θ corresponds to an invertible ARMA model, we obtain
that

Xt(θ) =

∞∑
j=1

ϕj(θ)Xt−j(θ) + Zt, t ∈ Z,

where ϕ(θ)(z) = 1− γ(θ)(z)−1φ(θ)(z) with

(φ(θ)(z), γ(θ)(z)) = (1− θ1z − · · · − θpzp, 1 + θp+1z + · · ·+ θp+qz
q).

Thus, one can identify the best linear prediction (with infinite coefficients)

Π∞(θ)(Xt(θ)) =
∞∑
j=1

ϕj(θ)Xt−j(θ),

and then RL∞(θ) = σ2. We also know that there exist C > 0 and 0 < ρ < 1 so that
|ϕj | ≤ Cρj and then

E[(Πt−1(θ)(Xt)−Π∞(θ)(Xt))
2] = O(ρj)

for any second order stationary time series (Xt).
We can apply the Proposition from Straumann and we get the stationary ergodic se-

quence ˜̀
t(θ) = log(σ2) +

(Xt −Π∞(θ)(Xt))
2

σ2

with the corresponding risk function with

E[˜̀0](θ) = log(σ2) +
E[(X0 −Π∞(θ)(X0))2]

σ2
.

The sequence of loss functions (˜̀t) is stationary, ergodic and admits second order moments
if (Xt) does and we can apply Pfanzagl Theorem to it. That we can apply Pfanzagl theorem
also on the original (`t) which is approximating (˜̀t) comes from a Cesaro argument. We
obtain
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Proposition. If (Xt) is a stationary ergodic time series such that E[X2
0 ] < ∞, if Θ

corresponds to a causal ARMA models, if there exists a unique minimizer θ0 ∈ Θ of

θ 7→ E
[
(X0 −Π∞(θ)(X0))2

]
(3.1)

then the QMLE is strongly consistent θ̂n → θ0 a.s. as n→∞.

The last assumption of uniqueness depends on the parametrization of the model and
on the assumptions on (Xt). If one assumes that the observations (Xt) follows themselves
an ARMA model with θ0 ∈ Θ, then θ0 is unique if the polynomials φ and γ for θ ∈ Θ do
not have common roots. Let us denote C ⊂ Rp+q the set of parameters corresponding to
a causal and invertible ARMA(p, q) models with no common roots. We have the following
strong consistency result

Theorem ( Hannan (1970)). If (Xt) satisfies an ARMA(p, q) model with θ0 ∈ C and (Zt)
SWN(σ2), σ2 > 0, then the QMLE is strongly consistent θ̂n → θ0 a.s.

Proof. The main difficulty is that C is an open set by definition. One should work on
its closure C̄ that is compact after excluding the points on the boundary ∂C as potential
minimizers, see Proposition 10.8.3. of Brockwell and Davis (2013). We will not detail this
technical step here.

The rest of the proof is an application of Pfanzagl theorem as above. The ergodicity
and stationarity is ensured because of the causal representation Xt =

∑
j≥0 ψjZt−j where

(Zt) is a SWN, thus iid and thus ergodic and stationery. The unicity of θ0 is derived from
the identity

E
[
(X0 −Π∞(θ)(X0))2

]
= E

[
(Π∞(θ0)(X0)−Π∞(θ)(X0))2

]
+ σ2,

obtained using X0 = Π∞(θ0)(X0) +Z0 and orthogonality. The expectation term is null iff
Π∞(θ0)(X0) = Π∞(θ)(X0) =

∑
j≥0 ϕ(θ0)X−j−1 a.s. As the function

(φ(θ)(z), γ(θ)(z)) = (1− θ1z − · · · − θpzp, 1 + θp+1z + · · ·+ θp+qz
q)

giving ϕ(θ)(z) = 1− γ(θ)(z)−1φ(θ)(z) is injective we deduce that the expectation term is
null iff θ = θ0. Then θ0 is the unique minimizer of the risk.

3.2.2 Estimation of the variance of the noise

In practice, the variance of the WN σ2 > 0 is unknown and one has to estimate this
parameter. However, since σ2 is unknown then RLt (θ) is not accessible. Fortunately, we
have the identity RLt (θ) = σ2rLt (θ) where now rLt (θ) corresponds to the risk of linear pre-
diction assuming that (Zt) is a gaussian (standardized) WN(1). Moreover the innovations
It(θ) = Xt(θ)− Πt−1(Xt(θ)) of the ARMA model with parameter θ is independent of σ2.
Thus considering the QLik functions in (θ, σ2) we have

Ln(θ, σ2) =

n∑
t=1

log(σ2rLt (θ)) +
(Xt −Πt−1(θ)(Xt))

2

σ2rLt (θ)
+ cst.

Differentiating with respect to σ2 provides

σ2(θ) :=
1

n

n∑
t=1

(Xt −Πt−1(θ)(Xt))
2

rLt (θ)
.
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Plugin in the likelihood Ln(θ, σ2(θ)) we obtain that θ̂n minimizes the reduced likelihood

L0
n(θ) = n log

( 1

n

n∑
t=1

(Xt −Πt−1(θ)(Xt))
2

rLt (θ)

)
+

n∑
t=1

log(rLt (θ)) + cst .

Noticing that the asymptotic behavior of the contrast n−1L0
n(θ) is similar than above, an

application to Pfanzagl theorem on L0
n(θ) provides

Proposition. If (Xt) satisfies an ARMA(p, q) model with θ0 ∈ C and (Zt) SWN(σ2),
σ2 > 0, then the QMLE provides also a strongly consistent estimator of the variance σ2

θ̂n
a.s.−−→ θ and σ̂2

n
a.s.−−→ σ2, n→∞.

Remark. One considered Πt(θ) and rLt (θ) as known. It is actually one main crucial issue
to compute Πt(θ) and rLt (θ) efficiently, issue that will be solved later.

By definition, we have rLt (θ) → rL∞(θ) = 1 for any θ ∈ C by definition of rLt (θ). Using
a Cesaro argument, we obtain n−1

∑n
t=1 log(rLt (θ))→ 0 so that

1

n
L0
n(θ) ≈ log

( 1

n

n∑
t=1

(Xt −Πt−1(θ)(Xt))
2

rLt (θ)

)
+ cst .

Thus the QMLE approximatively minimizes the squares

n∑
t=1

(Xt −Πt−1(θ)(Xt))
2

rLt (θ)
.

The least squares estimator θ̃n is defined as the minimizer of this contrast. One can also
define a least squares estimator of the variance

σ̃2
n =

1

n− p− q

n∑
t=1

(Xt −Πt−1(θ̃n)(Xt))
2

rLt (θ̃n)

where n− p− q stands for the n− p− q degrees of freedom. The lease squares estimators
and the QMLE are asymptotically equivalent.

3.2.3 Misspecification

Definition 32. The QMLE is well specified when the observations are stationary solutions
of an ARMA(p, q) model for the same (p, q) and with gaussian WN(σ2), σ2 > 0. Otherwise
it is misspecified.

Consider now that (Xt) is a centered stationary ergodic time series such that E[X2
0 ] <

∞. We do not assume anymore that (Xt) follows an ARMA(p, q) model. One studies the
asymptotic behaviour of the QMLE of the ARMA model with C ∈ Rp+q. Such cases are
called misspecification as the density used to calculate the contrast is not the correct one.
Such setting is very important to obtain results that are satisfied even if the normal and the
model assumptions used to derive the QLik loss does not hold. In this context, Pfanzagl
theorem still holds and a careful look at the proof of the strong consistency show that it is
still valid under certain conditions. Actually, one can always decompose the second order
stationary process (Xt) as

Xt = Π∞(Xt) + I∞(X0)
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where I∞(X0) is orthogonal to the span of the past values {X−1, X−2, . . .}. Thus we obtain

E
[
(X0 −Π∞(θ)(X0))2

]
= E

[
(Π∞(X0)−Π∞(θ)(X0))2

]
+RL∞,

We are left to discuss the unicity of the minimizer of the function

θ 7→ E[(Π∞(X0)−Π∞(θ)(X0))2] =: E

∑
j≥1

(ϕj − ϕj(θ))X−j

2 .
Developing this quantity, we find a function of uj = (ϕj − ϕj(θ)):∑

i≥0

∑
j≥0

uiγX(|j − i|)uj ∈ [0,∞].

As RL∞ > 0, there is no co-linearity in (Xj)j≤0 and the kernel of this function is restricted
to {0}. It is not hard to show that it is a (possibly infinite) norm on the space of square
integrable series. One can define a projection on any closed convex subset of this space, in
particular

ϕ(C̄) := {(ϕj(θ)); θ ∈ C̄}.
However, one has to check that the norm is not infinite over ϕ(C̄). We know that for each
elements of (uj) ∈ ϕ(C̄) there exist C > 0 and 0 < ρ < 1 so that |uj | ≤ Cρj . Thus, if∑

h≥0 |γX(h)| <∞ we have∑
i≥0

∑
j≥0

uiγX(|j − i|)uj ≤ 2C2
∑
i≥0

ρi
∑
h≥0

|γX(h)|ρi+h ≤ 2C2
∑
i≥0

ρ2i

∑
h≥0 |γX(h)|

1− ρ
<∞.

Thus E[(Π∞(X0) − Π∞(θ)(X0))2] is minimized by the projection of the coefficients of
Π∞(X0) over ϕ(C̄). The coefficients of the projection (ϕj(θ)) are unique but not necessarily
the parameters θ ∈ ∂C. For instance, if (Xt) is not an ARMA model with minimal lag
polynomials γ and φ, one cannot avoid the possibility of parameters θ ∈ ∂C that correspond
to polynomial with common roots. We say that a point y converges to a set X when
d(y,X ) = infx∈X ‖y − x‖ → 0. We obtain

Proposition. Consider a centered stationary ergodic time series (Xt) such that E[X2
0 ] <

∞, RL∞ > 0 and
∑

h≥0 |γX(h)| <∞. Then the QMLE converges to the set Θ0 corresponding
to the coefficients (ϕj(θ0)) that uniquely determine the best linear prediction over ϕ(C̄).

Example 13. Fitting an ARMA(1,1) on a SWN it is not possible to avoid the case of
common roots φ1 = −γ1 as shown by the following code from tsaEZ

> set.seed(8675309)
> x = rnorm(150, mean=5) # generate iid N(5,1)s
> arima(x, order=c(1,0,1)) # estimation

Call:
arima(x = x, order = c(1, 0, 1))

Coefficients:
ar1 ma1 intercept

-0.9595 0.9527 5.0462
s.e. 0.1688 0.1750 0.0727

sigma^2 estimated as 0.7986: log likelihood = -195.98, aic = 399.96
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As emphasised in the exemple above, the variance σ2 is no longer consistently estimated
by the square of the innovations of the fitted ARMA(1,1) model due to the extra aditive
term E[(Π∞(X0)−Π∞(θ)(X0))2] called the bias.

3.3 Asymptotic normality and model selection

We have seen that it is crucial in practice to choose a good ARMA model in order to fit the
data. The choice of the orders of the ARMA models is a difficult task requiring properties
on the QMLE as the asymptotic normality.

3.3.1 Kullback-Leibler divergence

One can identify the risk E[˜̀0] associated with the QLik loss with an important notion
from information theory that is a pseudo-distance between probability measures.

Definition 33. The Kullback-Leibler divergence (KL, relative entropy) between two prob-
ability measures P1 and P2 is defined as

K(P1, P2) = EP1 [log(dP1/dP2)].

The KL divergence has nice properties

Proposition. We have K(P1, P2) ≥ 0 and K(P1, P2) = 0 iff P1 = P2 a.s.

One can identify, up to additive constants, the standardized risk

E[˜̀0(θ)] = log(σ2) +
E
[
(X0 −Π∞(θ)(X0))2

]
σ2

as twice the expectation of the KL divergence of

2E[K(PX0|X−1,X−2,...,N (Π∞(θ)(X0), σ2))]

where the expectation is taken over the distribution of the past (X−1, X−2, . . .) and the
KL divergence is understood conditional to this past.

Thus, if (Xt) follows an ARMA model with parameter θ0, we have that θ0 is the unique
minimizer of the risk E[˜̀0] but also of the conditional risk

E[˜̀0(θ) | X−1, X−2, . . .] = 2K(PX0|X−1,X−2,...,N (Π∞(θ)(X0), RL∞(θ))) + cst.

3.3.2 Asymptotic normality of the MLE

Let us turn to the general case of any ML Estimator

θ̃n ∈ arg min
Θ
L̃n(θ) = arg min

Θ

n∑
t=1

˜̀
t(θ)

where ˜̀t = −2 log(fθ(Xt | Xt−1, Xt−2, . . .)) constitutes a stationary sequence of contrast
such that θ0 is the unique minimizer of E[˜̀0] on a compact set Θ ⊂ Rd, d ≥ 0 being the
dimension of the parametric estimation. We assume that the conditions of integrability in
Pfanzagl theorem are satisfied so that θ̃n is strongly consistent. The asymptotic normality
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of the MLE follows in most of the cases under extra assumptions. If L̃n is sufficiently
regular (2-times continuously differentiable) then a Taylor expansion gives

∇L̃n(θ̃n) ≈ ∇L̃n(θ0) +∇2L̃n(θ̃n)(θ̃n − θ0) . (3.2)

Notice that if θ̃n ∈
◦
Θ the interior of the compact set then ∇L̃n(θ̃n) = 0 as the MLE is the

minimizer of the likelihood contrast by assumption. So we have to study the properties of
the two first derivative of the contrast L̃n. Let us first show that the two first derivatives
of L̃n have nice properties at θ̃0:

Definition 34. The score vector is defined as the gradient of the QLik loss (up to constant)

St(θ) = ∂θ log(fθ(Xt | Xt−1, Xt−2, . . .)).

The Fisher’s information is I(θ0) = −E[∂2
θ log(fθ(Xt | Xt−1, Xt−2, . . .))].

We have the following property, deriving from the definition of θ0 as the unique mini-
mizer of E[−2 log(fθ(Xt | Xt−1, Xt−2, . . .)) | Xt−1, Xt−2, . . .] from the discussion on the KL
divergence, we obtain

Proposition. If θ0 ∈
◦
Θ is the unique minimizer of the conditional risk

−E[log(fθ(Xt | Xt−1, Xt−2, . . .)) | Xt−1, Xt−2, . . .]

then the score vector is centered E[S0(θ0) | X−1, X−2, . . .] = 0 and I(θ0) is a symmetric defi-
nite positive matrix. If moreover the model is well-specified so that f(Xt | Xt−1, Xt−2, . . .) =
fθ0(Xt | Xt−1, Xt−2, . . .), then I(θ0) = Var (S0(θ0)) and its inverse(×n) is the smallest pos-
sible variance of any unbiased estimator, called the Cramer-Rao bound.

Proof. As θ0 is the minimizer of the conditional KL in the interior of a compact set,
the derivative is null at this point. Thus the score is centered by differentiating under
the integral. Moreover, the Fisher information is definite otherwise the minimizer is not
unique.

Assume now that f(Xt | Xt−1, Xt−2, . . .) coincides with fθ0(Xt | Xt−1, Xt−2, . . .) which
is identically distributed as fθ0 := fθ0(X0 | X−1, X−2, . . .) by stationarity. Then we have

0 = E[∂θ log(fθ0) | X−1, X−2, . . .] = E

[
∂θfθ0
fθ0

| X−1, X−2, . . .

]
=

∫
∂θfθ0 .

Assuming that one can differentiate under the integral, we then also have
∫
∂2
θfθ0 = 0.

Simple calculation yields

I(θ0) = E

[
∂θfθ0∂θf

>
θ0
− fθ0∂2

θfθ0
f2
θ0

]
= E[S0(θ0)S0(θ0)>] = Var (S0(θ0)).

The proof of the Cramer-Rao bound is classical for d = 1. Any unbiased estimator θn
satisfies E[θn] = θ0 which can be written as

E
[ ∫

θn

n∏
t=1

fθ0(Xt | Xt−1, Xt−2, . . .)
]

= θ0.
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By differentiation over θ0, we obtain
∑n

t=1E[
∫
θn∂θfθ0(Xt | Xt−1, Xt−2, . . .)] = 1. Thus as

the scores are centered and by Cauchy-Schwarz inequality we obtain

1 =

n∑
t=1

E
[ ∫

(θ̂n − θ0)∂θfθ0(Xt | Xt−1, Xt−2, . . .)
]

=
n∑
t=1

E

[∫
(θ̂n − θ0)

√
fθ0(Xt | Xt−1, Xt−2, . . .)

∂θfθ0(Xt | Xt−1, Xt−2, . . .)√
fθ0(Xt | Xt−1, Xt−2, . . .)

]

≤
n∑
t=1

E

[√∫
(θ̂n − θ0)2fθ0(Xt | Xt−1, Xt−2, . . .)E[St(θ0)2|Xt−1, Xt−2, . . .]

]

≤
n∑
t=1

Var (θ̂n)Var (St(θ0)) = nVar (θ̂n)Var (S0(θ0))

and the desired result follows.

The inverse of the Fisher information is interpreted as the best possible asymptotic
variance. We obtain

Theorem. If there exists θ ∈
◦
Θ which is the unique minimizer of the conditional risk, if

the contrast ˜̀t = −2 log(fθ(Xt | Xt−1, Xt−2, . . .)) is twice continuously differentiable and
integrable, then the MLE is asymptotically normal

√
n(θ̃n − θ0)

d.−→ N (0, I(θ0)−1Var (S0)I(θ0)−1).

Moreover, it is asymptotically efficient, i.e. the asymptotic variance coincides with the
Cramer-Rao bound, when the model is well-specified.

Proof. The sequence of score vectors (St) constitutes a differences of martingale process.
The CLT extends to such square integrable differences of martingale and we obtain

− 1√
n
∇L̃n(θ0) = 2

1√
n

n∑
t=1

St
d.−→ N (0, 4Var (S0)).

One can also use the ergodic theorem and the strong consistency of θ̂n to obtain

1

n
∇2L̃n(θ̃n) = −2

1

n

n∑
t=1

∂2
θ log(f

θ̃n
(Xt | Xt−1, Xt−2, . . .))

a.s.−−→ 2I(θ0).

Thus, starting from the identity (3.2), we obtain

0 ≈ ∇L̃n(θ0) +∇2L̃n(θ̃n)(θ̃n − θ0)

⇔ −∇L̃n(θ0) ≈ ∇2L̃n(θ̃n)(θ̃n − θ0)

⇔ − 1√
n
∇Ln(θ0) =

1

n
∇2L̃n(θ̃n)

√
n(θ̂n − θ0).

The LHS of the last identity converges in distribution to N (0, 4Var (S0)), the RHS is a.s.
equivalent to 2I(θ0)

√
n(θ̂n − θ0) so that the desired result is obtained.
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3.3.3 Asymptotic normality of the QMLE

We assume here that σ2 is known. As θ0 was uniquely determined in Theorem 3.2.1, as
C is an open set so that θ0 ∈

◦
C, we immediately obtain the asymptotic normality of the

QMLE:

Theorem (Hannan (1970)). If (Xt) satisfies an ARMA(p, q) model with θ0 ∈ C and (Zt)
SWN(σ2), σ2 > 0, then the QMLE is asymptotically normal

√
n(θ̂n − θ0)

d.−→ Np+q
(
0,Var (ARp, . . . , AR1,MAq, . . . ,MA1)−1

)
where (ARt) and (MAt) are AR(p) and AR(q) models driven by the coefficient θ0, the
same SWN(1) (ηt) and satisfying

φ(θ0)(L)ARt = γ(θ0)(L)MAt = ηt, t ∈ Z.

In misspecified cases, the uniqueness of θ0 is not ensured and the asymptotic normality
result is not possible in full generality.

Proof. We deal with the stationary ergodic losses rather than their approximations used
for calculating θ̂n. Indeed the approximation is converging exponentially fast in L2 and
will not have any consequence on the asymptotic properties of θ̂n. One first checks the
differentiability and integrability conditions on the QLik contrast

˜̀
t(θ) = log(σ2) +

(Xt −Π∞(θ)(Xt))
2

σ2
.

The score is defined as

St(θ) =
(Xt −Π∞(θ)(Xt))

RL∞(θ)
∂θΠ∞(θ)(Xt).

From the identity Xt −Π∞(θ0)(Xt) = Zt we obtain the expression

St =
1

σ2
Zt∂θΠ∞(θ0)(Xt).

One checks easily that E[S0 | Xt−1, Xt−2, . . .] = 0 even when (Zt) is not gaussian. Its
variance is

Var (S0) =
1

σ2
E[∂θΠ∞(θ0)(Xt)∂θΠ∞(θ0)(Xt)

>]

Similarly, one computes the Fisher information

I(θ0) =
1

σ2
E[∂θΠ∞(θ0)(Xt)∂θΠ∞(θ0)(Xt)

> − Zt∂2
θΠ∞(θ0)(Xt)]

=
1

σ2
E[∂θΠ∞(θ0)(Xt)∂θΠ∞(θ0)(Xt)

>].

As Π∞(θ0)(Xt) = γ(L)−1φ(L)Xt we have that

∂φkΠ∞(θ0)(Xt) = γ(L)−1LkXt = φ(L)−1Zt−k = σARt−k.

Similarly, we have
∂γkγ(L)−1 = ∂γkγ(L)γ(L)−2 = Lkγ(L)−2

so that
∂γkΠ∞(θ0)(Xt) = Lkγ(L)−2φ(L)Xt = γ(L)−1Zt−k = σMAt−k.

The desired result follows.
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Note that the asymptotic variance of θ̂n does not depend on σ2. It complements the
fact that θ and σ2 can be estimated separately in ARMA models.

From the proof, we have an alternative expression for the asymptotic variance as

I(θ0)−1 = σ2E[∂θΠ∞(θ0)(Xt)∂θΠ∞(θ0)(Xt)
>]−1.

As soon as (Zt) is SWN(σ2 = RL∞ > 0), the identity I(θ0) = Var (S0) holds and the QMLE
is efficient.

Note that the asymptotic variance can be estimated by computing the covariances
of (ARt) and (MAt) driven by the QMLE θ̂n (actually one can compute it explicitly in
term of the coefficients θ of the polynomial of (ARt) and (MAt) or one can use numerical
approximations, see exercices class).

3.3.4 Asymptotic properties of the maximum of the reduced likelihood

We give an heuristic of the order second behavior of the bias of L0
n(θ̂n) for p and q fixed.

We use a Taylor expansion

L0
n(θ0) ≈ L0

n(θ̂n) +∇L0
n(θ̂n)(θ0 − θ̂n) +

1

2
(θ0 − θ̂n)>∇2L0

n(θ̂n)(θ0 − θ̂n).

From the definition of θ̂n as the minimizer of L0
n, the first derivative is null and the first

order term in the expansion vanishes. We assume the optimal asymptotic normality result
achieving the Cramer-Rao bound I(θ0) = ∇2 ˜̀

0(θ0)]−1 as asymptotic variance
√
n(θ̂n − θ0)

d.−→ Np+q
(

0, 2E[∇2 ˜̀
0(θ0)]−1

)
.

Then Slutsky Lemma applies on the second order term and we get

1

2

√
n(θ0 − θ̂n)>

1

n
∇2L0

n(θ̂n)
√
n(θ0 − θ̂n) ≈ N>N

where N is a standard p+ q gaussian vector. We have E[N>N ] = p+ q. Summarizing our
findings, we obtain that in expectation we have

E[L0
n(θ̂n)] ≈ E[L0

n(θ0)]− (p+ q).

This result, depending on θ̂n throught the predictions Πt(θ̂n)(Xt) and not on the parametric
estimation, might be extended in misspecified cases. The quality of the prediction at θ̂n
estimated on the sample (X1, . . . Xn) is strictly better than the best possible prediction
(using θ0). Moreover it depends on the number p + q of parameter one has to estimate.
This statement is not contradictory because using Xt twice in (Xt − Πt(θ̂n(p, q))(Xt))

2,
once for calculating θ̂n and another time for calculating the error, one under estimates the
risk of prediction. It is because θ̂n uses the future in Π(θ̂n(p, q))(Xt) to predict Xt.

3.3.5 Akaike and other information criteria

One faces a crucial issues when fitting an ARMA model to observations that are not issued
from an ARMA model themselves (the model is misspecified, which is always the case in
practice). Thus, in order to find the sparsest ARMA representation for our observation
(Xt) it is fundamental to have some criteria in order to choose the smallest order (p, q) of
the model.

A good measure between distributions is the KL-divergence, see Section 3.3.1. From
an ARMA(p, q) model, the QML approach will predict the future value thanks to the
distribution N (Π∞(θ̂n)(X0), σ̂2

n). Let us define
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Definition 35. The predictive power of the model ARMA(p, q) fitted by the QMLE θ̂n is

K(PX0|X−1,X−2,...,N (Π∞(θ)(X0), σ2))
∣∣∣
θ=θ̂n

.

It is the KL divergence between the distribution of the future of the observation given
the past and the distribution of the prediction given the ARMA(p, q) model fitted by the
QMLE.

By comparing the predictive power for different orders (p, q) and choosing the smallest
number of parameters p+q that achieves the maximal predictive power, one should choose
the sparsest ARMA representation with the best prediction. Let us denote θ̂n(p, q) the
QMLE for the ARMA(p, q) on the reduced likelihood. Akaike idea is to approximate (−2
times) the predictive power by penalizing the quantity

1

n
L0
n(θ̂n) = log(σ2(θ̂n(p, q))) +

1

n

n∑
t=1

log(rLt (θ̂n(p, q))) + 1.

However, the above expression is a biased estimator of (−2 times) the predictive power
because the sample (X1, . . . Xn) is used twice in (Xt−Π(θ̂n(p, q))(Xt))

2, once for calculating
θ̂n and another time for estimating the function E[`0]. More precisely, we have

Definition 36. We define three information criteria as penalized log-likelihood

1. Akaike Information Criterion: AIC = 1
nL

0
n(θ̂n(p, q)) + 2(p+q)

n ,

2. Bayesian Information Criterion: BIC = 1
nL

0
n(θ̂n(p, q)) + logn(p+q)

n ,

3. Akaike Information Criterion corrected: AICc = 1
nL

0
n(θ̂n(p, q)) + 2(p+q)

n−p−q−1 .

We have 1
nL

0
n(θ̂n) ≈ log(σ̂2

n(p, q))+1 when rt(θ̂n(p, q))→ 1 (i.e. the well-specified case)
and some authors considered instead AIC = log(σ̂n(p, q)) + 2(p+q)

n , BIC = log(σ̂n(p, q)) +
log(n)(p+q)

n and AICc = log(σ̂2
n(p, q)) + 2(p+q)

n−p−q−1 .
The procedure is then to select the order (p̂n, q̂n) that minimizes one of the information

criterion. Notice that one can compare the penalties and as AIC < AICc < BIC for
a fixed model, the order chosen by the procedure will be reversed; BIC will choose the
sparsest model whereas AIC will choose the model with the largest number of parameters.

If the observations (Xt) satisfies an ARMA(p,q) model then, asymptotically,

• BIC procedure chooses the correct order,

• AIC and, a fortiori, AICc, select the best predictive model.

Notice that the best predictive model is not necessarily the true model. AICc is preferred
to AIC that can over-fit when n is small. The last item follows from the heuristic

Proposition (Akaike (1974)). The AIC defined above are asymptotically unbiased estima-
tors of the predictive power of the ARMA(p, q) model.

Proof. We give the heuristic for the AIC only. From the discussion Section 3.3.4 we have

L0
n(θ̂n) ≈ L0

n(θ0)− (p+ q).

On the opposite, we have the Taylor expansion of the predictive power term is

E[˜̀0(θ̂n)] ≈ E[̂̀0(θ0)] + E[∇θ ˜̀0(θ0)>(θ̂n − θ0)] +
1

2
(θ̂n − θ0)>E[∇2 ˜̀

0(θ0)](θ̂n − θ0).
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The first order term is null as θ0 is the unique minimizer of E[˜̀0]. Moreover, thanks to the
asymptotic normality of the QMLE as in Section 3.3.4 we obtain

E[
√
n(θ̂n − θ0)>E[∇2 ˜̀

0(θ0)]
√
n(θ̂n − θ0)] ≈ E[N>N ] ≈ p+ q.

We obtain the desired result

1

n
E[L0

n(θ̂n(p, q))] +
2(p+ q)

n
≈ 1

n
E[L0

n(θ0(p, q))] +
p+ q

n

≈ E[˜̀0(θ0)] +
p+ q

n

≈ E[˜̀0(θ̂n)].

3.3.6 Interval of prediction.

The aim of time series model is to produce forecasting under the condition that (Xt) is
stationary. We will assert the point and interval predictions produced by the ARMA model
and we will discuss its ability.

Let us first consider the one step prediction. The prediction of Xn+1 is given by X̂n+1 =
Πn(θ̂n)(Xn+1). An interval of prediction is often more useful than a point prediction.
Denoting σ̂2(1) = RLn(θ̂n) the QMLE produces a natural interval of confidence α such as

Îα(Xn+1) = [X̂n+1 − qN1−α/2σn(1); X̂n+1 + qN1−α/2σ̂n(1)]

where qN1−α/2 is the quantile of order 1 − α/2 of the standard gaussian r.v. N . It is an
estimator of the best interval for Xn+1 given the past which is defined as

Iα(Xn+1) = [qβ(Xn+1 | Xn, . . . , X1), qα−β(Xn+1 | Xn, . . . , X1)]

where qβ(Xn+1 | Xn, Xn−1, . . .) is the quantile of order 0 ≥ β ≥ 1 of the conditional
distribution of Xn+1 given the observations X1, . . . , Xn and β is chosen such that the
length of the interval is the smallest possible. Often, we assume that the conditional
distribution is symmetric and then β = α/2.

For an ARMA model, it is also possible to produce h step prediction intervals for any
h ≥ 1 as

Îα(Xn+h) = [Πn(θ̂n)(Xn+h)− qN1−α/2σ̂n(h); Πn(θ̂n)(Xn+h) + qN1−α/2σ̂n(h)]

where Πn(θ)(Xn+h) is the best linear projection of Xn+h on the span of the observation
given the ARMA model θ such that

Πn(θ)(Xn+h) ≈
p∑
i=1

φiΠn(θ)(Xn+h−i) +

q∑
j=h

θj(Xn+h−j −Πn+h−j−1(θ)(Xn+h−j))

and σ̂n(h) is the associated variance

σ̂2
n(h) ≈ σ̂2

n

h−1∑
j=0

ψj(θ̂n)2.

Notice that the issue of the explicit and efficient computations of those quantities will be
treated later.

The usefulness of the interval of prediction is that it provides indicators of risk ;
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Figure 3.1: The interval of prediction does not take into account the present variability
of the time series. When the present variability is low (on the left), the interval is too
conservative (too large). On the opposite, when the present variability is high (on the
right), the interval is too optimistic (too low).

Definition 37. The length of the interval |Îα(Xn+1))| is an indicator of the risk of pre-
diction with confidence level 1− α; in the symmetric case, the lower and upper points are
indicators of the risk of lower and higher values with level α/2 called Values at Risks (VaR,
quantiles of the conditional distribution).

The prediction forecast provides good indicators of any level if it has a large predictive
power

−2E[K(PX0|X−1,X−2
),Pθ(X0 | X−1, X−2, . . .))]

∣∣∣
θ=θ̂n

.

The QMLE for ARMA models the conditional distribution

P
θ̂n

(X0 | X−1, X−2, . . .) = N (Πn(θ̂n)(Xn+1), σ2(θ̂n)).

There σ̂2 ≈ σ2 is approximatively a constant and the model on the conditional probability
is dependent on the present observations only for the mean Πn(θ̂n)(Xn+1). Thus, ARMA
models produce good point prediction but may fail for interval of predictions. The center
of the interval of prediction is accurate in view of the past values but not the length of the
interval that adapts not well to the present behavior of the time series.

Example 14. Let us consider Xt = φXt + Zt where (Zt) is a WN(σ2). Then the interval
of prediction of confidence level 1− α of horizon h is given by

Îα(Xn+h) = [φ̂hnXn − qN1−α/2σ̂n(h), φ̂hnXn + qN1−α/2σ̂n(h)]

where φ̂n =
∑n

t=2XtXt−1/
∑n

t=1X
2
t is the QMLE and

σ̂2
n(h) =

1− φ̂h+1
n

1− φ̂n
1

n

( n∑
t=2

(Xt − φ̂nXt−1)2 +X2
1 (1− φ̂n)

)
is the estimation of the variance. Then the variance and the length of the interval of
prediction does not depend on the present variability of the time series as shown in Figure
14



Chapter 4
GARCH models

In order to estimate risk indicators more adaptive to the actual variability of the observed
time series, the concept of volatility has been introduced:

Definition 38. Consider a second order stationary time series. Its volatility at time t is
its conditional variance given the past

σ2
t = Var (Xt | Xt−1, Xt−2, . . .).

Notice that the volatility is a predictable process in the sense that at time t it depends
on the past. Assuming the gaussian assumption on the conditional distribution, a better
1-step prediction interval from an ARMA model is given by

[Πn(θ̂n)(Xn+1)− qN1−α/2σ
2
n+1,Πn(θ̂n)(Xn+1) + qN1−α/2σ

2
n+1],

where σ2
n+1 is the volatility at time n+ 1. It produces nice risk indicators and the length

of the interval of prediction adapts to the present volatility of the time series. As the
volatility is predictable, one can estimate it thanks to some model different than ARMA
models.

We consider (Zt) an observed WN. This WN is actually most of the time the residuals
(innovations) of an ARMA model fitted by the QMLE in a first step of the analysis.

Definition 39. The GARCH(p, q) model (Generalized Autoregressive Conditional Het-
eroscedastic) is solution, if it exists, of the system:{

Zt = σtWt, t ∈ Z,
σ2
t = ω + β1σ

2
t−1 + · · ·+ βpσ

2
t−p + α1X

2
t−1 + · · ·+ αqZ

2
t−q,

with ω > 0, αi, βi ≥ 0 and (Wt) ∈ SWN(1).

Remark. If βi = 0, 1 ≤ i ≤ p, GARCH(0,q)=ARCH(q). If αi = 0, 1 ≤ i ≤ q, σ2
t =

ω/(1− β1 + . . .+ βp) is degenerate.

In the sequel, we focus for simplicity on p = q = 1.

4.1 Existence and moments of a GARCH(1,1)

We say that (Zt) is a non-anticipative solution of a GARCH(1,1) model if Zt ∈ Ft =
σ(Ws, s ≤ t).

41
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Figure 4.1: A trajectory and the corresponding ACF of the solution of a GARCH(1,1)
model and its squares (to be compared with the SWN case)

Proposition. A GARCH(1,1) model such that α+ β < 1 has a non-anticipative solution
(Zt) which is a stationary WN(σ2 := ω/(1 − α + β). Then σ2

t = Var (Zt | Zt−1, Zt−2, . . .)
is the predictable (σ2

t ∈ Ft−1) volatility of (Zt).

Proof. Write σ2
t = ω + (β + αW 2

t−1)σ2
t−1 as an AR(1) model with random coefficients. We

have an explicit solution, which is non-anticipative and stationary (if the series converges)

σ2
t = ω + (β + αW 2

t−1)
(
ω + (β + αW 2

t−2)σ2
t−2

)
= ω

+∞∑
j=1

j∏
k=1

(β + αW 2
t−k) + 1


Let Yj =

∏j
k=1(β+αW 2

t−k). As soon as
∑+∞

j=1 E [|Yj |] < +∞, the series
∑+∞

j=1 Yj converges
a.s. absolutely. We have:

E [|Yj |] = E

[
j∏

k=1

(β + αW 2
t−k)

]
=

j∏
k=1

E
[
β + αW 2

t−k
]

= (β + α)j

If α + β < 1, then
∑+∞

j=1(β + α)j < +∞ and σ2
t a.s. exists, is predictable and E[σ2

t ] =

σ2. So Zt = σtWt exists and E[Z2
t ] = E[σ2

tW
2
t ] = E[σ2

t ] because E[W 2
t ] = 1 and σ2

t is
predictable. Moreover, E[Zt | Ft−1] = σtE[Wt | Ft−1] = 0 and, for s < t, E[ZsZt] =
E[ZsσtE[ZtFt−1]] = 0.

Remark. • The volatility σ2
t = ω + βσ2

t−1 + αZ2
t−1 is also invertible if β < 1, i.e.

σ2
t = σ(Wt−1, σ

2
t−1, σ

2
t−2, . . .).

• The WN is unpredictable, i.e. E[Zt | Ft−1] = 0 so that the best prediction is 0. One
also say that (Zt) is a martingale differences sequence.

If |Xt−1| is large, then σ2
t ≥ αX2

t−1 is too and thus Xt has a large conditional variance.
We talk about periods of high volatility. Thanks to non-linearity, the model captures a
conditionally heteroscedastic behavior, which we observe in finance for example.

The stationary solution of a GARCH(1,1) exists under much weaker solution. Station-
ary solutions that are not second order stationary satisfies E[Z2

t ] = ∞, one says they are
heavy tailed.

Theorem. If E
[
log(β + αZ2

0 )
]
< 0 and E

[
| log(β + αZ2

0 )|
]
< ∞, then the GARCH(1,1)

model has a (strictly) stationary solution.
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Proof. Let (Y ′t ) iid, Y ′t = log(β + αW 2
t ). By the strong law of large numbers:

1

n

n∑
t=1

Y ′t
a.s.−→ E [Y0] = E

[
log(β + αW 2

0 )
]
< +∞

Besides,
∑n

j=1 Yj =
∑n

j=1

∏j
k=1(αW 2

t−k + β) converges a.s. absolutely if it satisfies the

Cauchy criteria. Let us show that Y
1
j

j
a.s.−→ ρ with ρ < 1.

P
(
Y

1
j

j −→ ρ

)
= 1⇔ P

( j∏
k=1

αW 2
t−k + β

) 1
j

−→ ρ

 = 1

⇔ P

[
exp

(
1

j

j∑
t=1

Y ′t

)
−→ ρ

]
= 1

⇔ P

(
1

j

j∑
t=1

Y ′t −→ log ρ

)
= 1

This equality is true with log ρ = E
[
log(β + αW 2

0 )
]
< 0.

Remark. If α+β < 1, then by Jensen’s inequality E
[
log(β + αW 2

0 )
]
≤ log

(
E
[
β + αW 2

0

])
=

log(α+ β) < 0.

Example 15. Consider the ARCH(1) model with β = 0 etW0 ∼ N (0, 1), then E
[
log(αW 2

0 )
]
<

0⇔ α < 2eγ ' 3, 56. The stationary condition is much weaker than the second order sta-
tionary condition α < 1 (as β = 0).

Remark. The GARCH(1,1) model under the condition E
[
log(β + αW 2

0 )
]
< 0 (⇒ β < 1)

is invertible:

σ2
t =

+∞∑
j=0

βj(ω + αZ2
t−j−1), t ∈ Z.

The GARCH model is a special case of a stochastic volatility model. We call stochastic
volatility model (Xt) a solution of{

Zt = σtWt, t ∈ Z,
σt > 0 is a predictable non anticipative sequence.

4.2 The Quasi Maximum Likelihood for GARCH models

Let us consider the QML approach for constructing an M -estimator for a GARCH(1,1)
model (Zt(θ))t∈Z with θ = (ω, α, β) ∈ R3. Assume that (Wt) is gaussian N (0, 1) and that
E[log(β + αW 2

0 )] < 0 such that the conditional log-likelihood of the stationary model is

−2 log(f(Zt(θ) | Zt−1(θ), Zt−2(θ), . . .)) = log(σ2
t (θ)) +

Zt(θ)
2

σ2
t (θ)

as

σ2
t (θ) =

+∞∑
j=0

βj(ω + αZt−j−1(θ)2)
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is invertible because β < 1. We also have

σ2
t (θ) = ω + βσ2

t−1(θ) + αZt−1(θ)2, t ∈ Z,

which is observable for t ≥ 2. We observe only Z1, . . . , Zn and we approximate σ2
t (θ) with

σ̂2
t (θ) such that

σ̂2
t (θ) = ω + βσ̂2

t−1(θ) + αZ2
t−1, from σ̂2

0(θ) arbitrary, (4.1)

The approximation error is a.s. bounded as O(βt).

Definition 40. The QMLE is the M -estimator defined as

θ̂n ∈ arg min
Θ

n∑
t=1

log(σ̂2
t (θ)) +

Z2
t

σ̂2
t (θ)

where Θ = (0,∞)× [0,∞)× [0, 1) and (σ̂2
t (θ)) is defined recursively thanks to (4.1).

Notice that the condition E[log(β + αW 2
0 )] < 0 is not explicit and cannot be used in

the definition of the QMLE. It is enough to ensure that the model is invertible β < 1 so
that the arbitrary initial choice in (4.1) is not important.

Assume that (Zt) is WN(σ2). The QLik risk is, using the tower property,

E

log

+∞∑
j=0

βj(ω + αZ2
t−j−1)

+
Z2

0∑+∞
j=0 β

j(ω + αZ2
t−j−1)


= E

log

+∞∑
j=0

βj(ω + αZ2
t−j−1)

+
σ2

0∑+∞
j=0 β

j(ω + αZ2
t−j−1)

 ,
where σ2

0 is the true volatility. The integrand is larger than 1 and equal to one iff σ2
0 =∑+∞

j=0 β
j(ω+αZ2

t−j−1) a.s.. Thus, the QLik risk is minimized by the volatility satisfying the
GARCH(1,1) equation that is the closest to the true volatility. Notice that the risk is not
equivalent to the square risk as it was the case for the ARMA model. Actually, it is very
robust to heavy tailed (Zt). Even if then the volatility does not exist when E[Z2

0 ] = ∞,
the QMLE for GARCH(1,1) is very useful to build risk indicators and prediction intervals.
We have

Theorem. Assume that (Zt) is a stationary and ergodic time series so that E log+(Z0)2 <
∞. Then the QMLE converges to the set of minimizers of the QLik risk

d(θ̂n,Θ0)→ 0, a.s.

If moreover (θ̂n) converges to θ0 ∈
◦
Θ and (Zt) satisfies a volatility model Zt = σtWt with

(Wt) SWN(1) and E[W 4
0 ] <∞ then

√
n(θ̂n − θ0)

d.−→ N3

(
0, (E[W 4

0 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]−1
)
.

In particular we have the identities

Var (S0) =
E[W 4

0 ]− 1

4
E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]
I(θ0) =

1

2
E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]
.

The QMLE is efficient only if (Wt) gaussian WN(1). In this case E[W 4
0 ] − 1 = 2 and the

inverse of the Fisher information is the Cramer-Rao bound.
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4.3 Simple testing on the coefficients

4.3.1 Tests of nullity

Having computed the QMLE (θ̂n), a natural issue is overfitting. Thus, one will test whether
one can reject the null hypothesis

1. ARCH model θ3 = β = 0, and then,

2. SWN model θ2 = α = 0.

To do so, one will construct a region of reject of the form θ̂i > ci for some constant ci
well chosen. Assuming the conditions of the asymptotic normality met, one will denote the
asymptotic variances

se2
i = (E[W 4

0 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]−1

ii

.

Assume that the asymptotic properties still hold on the boundary of the parameter set Θ0

so that θ̂i ≈ (sei/
√
n) max{N, 0} for N a standard gaussian r.v. under the null hypothesis.

Denoting Φ the distribution function of N and using the independence of N and I1N>0

which is Bernoulli(1/2) distributed, the p-value of the test is

P(
√
nθ̂i/sei < max{N, 0}) = Φ(−

√
nθ̂i/sei)

the smallest level of the test that rejects the null hypothesis, i.e. the probability to reject
the null hypothesis abusively. Note that due to the boundary effect we have θ̂i ≥ 0 and
the p-value is necessary smaller than 1/2.

One issue arises: there is no explicit expression of sei in term of θ so one has to estimate
the asymptotic variance in another way than the usual plug-in method θ = θ̂n. To do so,
we differentiate the recursive equation (4.1) followed by σ̂2

t (θ)

∇σ̂2
t (θ) =

 1
Z2
t−1

σ̂2
t−1(θ)

+ β∇σ̂2
t−1(θ),

staring from an arbitrary initial value that is forgotten exponentially fast when β < 1.
Thus one can approximate

E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]
≈ 1

n

n∑
t=1

∇σ̂2
t (θ̂n)∇σ̂2

t (θ̂n)

σ̂2
t (θ̂n)2

,

invert the approximation and estimate

E[W 4
0 ]− 1 ≈ 1

n

n∑
t=1

Ŵ 4
t − 1

where Ŵt = Zt/σ̂t(θ̂n) are the residuals of the GARCH(1,1) model. Doing so, one obtains
a consistent estimator of sei.

Another issue arises: there is no uniqueness of θ̂0 under the null α = 0 as then the
random volatility is degenerate to the constant ω/(1 − β). The asymptotic normality of
the QMLE could not hold in this case. The idea is to check first whether β = 0, if yes
then use the QMLE computed for the ARCH(1) model (adapting the previous construction
under the constraint β = 0) and then test α = 0 on the obtained α̂n.
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4.3.2 Test of second order stationarity

Another natural test is weather the fitted model satisfied the second order condition α+β <

1. Under the null hypothesis α+β ≥ 1 and E[log(β+αZ2
0 )] < 0, we have (ω0, α0, β0) ∈

◦
Θ0

when α0 + β0 = 1 and 0 < β0 < 1. θ0 is uniquely determined as the minimizer of the QLik
risk and the asymptotic normality holds. We have

√
n(α̂n + β̂n − 1)

d.−→ N (0, se2
2 + se2

3 + 2c23)

where

c23 = E[W 4
0 ]− 1)E

[
∇θσ2

0(θ0)∇θσ2
0(θ0)>

σ4
0(θ0)

]−1

23

can be consistently estimated in the same way than in the previous subsection.
The p-value of the corresponding test, with reject region of the form α̂n + β̂n < 1 − c

for some constant c > 0, is

P

(
N ≤

√
n(α̂n + βn − 1)/

√
se2

2 + se2
3 + 2c23

)
= Φ

(√
n(α̂n + βn − 1)/

√
se2

2 + se2
3 + 2c23

)
because the rejection region is one-sided.

4.3.3 Invertibility test

If β̂n . 1 under the constraint β < 1, which is often the case in finance, it is legitimate to
ask whether the condition of invertibility is satisfied. If one assumes that under the null
β ≥ 1 and E[log(β + αZ2

0 )] > 0 then one can proceed to a test rejecting on β. Under
E[log(β + αZ2

0 )] > 0, as σ2
t > 0, it is not difficult to prove that σ2

t → +∞ infinitely
fast from σ2

0 = 0. Thus, we are in an explosive case where the heteroscedasticity yields
unstability and the variability will always increase. In that situation, the initial arbitrary
value in the recursive formula (4.1) defining the QMLE is not important. What matters
is the rate of divergence of the volatility which is driven by the coefficients (α, β). In this
context Θ should be chosen equal to (0,∞)3 and not restricted over [0, 1) for β in order to
let β̂n be larger than 1. One can show that the QMLE is asymptotically normal when the
model is well specified

√
n(β̂n − β0)

d.−→ N (0, se2)

where
se2 =

(1 + µ1)µ2

β2
0(1− µ1)(1− µ2)

with

µi = E

[(
β0

α0W 2
0 + β0

)i]
Notice that se can be estimated from the residuals Ŵt and plugging in β̂n. The p-value of
the test with reject region of the form β̂n < c is of the form

P(N ≤
√
n(β̂n − 1)/se) = Φ(β̂n − 1)/se).

Notice that if one cannot reject the test (the p-value is too large) then we are not
confident in being in the invertible domain. In that case, one suspects that the stationary
condition is not satisfied on the centered (Zt) that may have the behavior of a centered
random walk. One should try to difference the original process one more time as, for
instance, there is no consistent estimator of ω and the volatility is not predictable.
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4.4 Intervals of prediction

Once we found the good volatility model for the conditional variance (GARCH(1,1),
ARCH(1) or a constant from the previous discussion), the volatility is predicted by

σ̂2
n+1(θ̂n) = ω̂n + β̂nσ̂

2
n(θ̂n) + α̂nZ

2
n.

Thus we obtain the interval of prediction of confidence level α as

Îα(Zn+1) = [−qN1−α/2σ̂n+1(θ̂n), qN1−α/2σ̂n+1(θ̂n)].

It is centered on 0 and the point prediction is useless. However the length of the interval
is very useful for risk assessment. Similarly, one can produce h step prediction intervals
using the recursion

σ̂2
n+h(θ̂n) = ω̂n + (β̂n + α̂n)σ̂2

n+h−1(θ̂n), h ≥ 1,

estimating Z2
n+h−1 non observed by σ̂2

n+h−1(θ̂n).
As the volatility of the noise is also the volatility of the original process, one can build

from the two-stage estimation (QML approach on (Xt) with the ARMA model and on the
residuals (Zt) = (It(θ̂n)) with the volatility model) a prediction interval on Xn+h. Recall
that σ̂2

n(h) is the estimation of E[(Xn+h−Πn(Xn+h))2] ≥ σ2. Denote σ̂2
n the approximation

of σ2 = RL∞. We can build

Îα(Xn+h) = [Πn(θ̂n)(Xn+h)− qN1−α/2
√
σ̂2
n(h)− σ̂2

n + σ̂2
n+h(θ̂n);

Πn(θ̂n)(Xn+h) + qN1−α/2

√
σ̂2
n(h)− σ̂2

n + σ̂2
n+h(θ̂n)],

with some abuse of notation as there is two different θ̂n, one for the ARMA and another
for the GARCH.

Since the GARCH modeling holds on the residual of an ARMA model, this two-step
procedure does not respect the flow of information. Actually, one could also consider the
likelihood of

Xt = φ1Xt−1 + · · ·+ φpXt−p + γ1Zt−1 + · · ·+ γqZt−q,

Zt = σtWt, t ∈ Z
σ2
t = ω + βσ2

t−1 + αε2
t−1,

under the assumption that (Wt) is a gaussian WN(1). Then the parameters are

θ = (φ1, . . . , φp, γ1, . . . , γq, ω, α, β)> ∈ Rd, d = p+ q + 3,

is estimated by the QMLE minimizing L̂n(θ) =
∑n

t=1
̂̀
t(θ) computed recursively as follows:

Starting from arbitrary initial values, observing recursively Xt,

1. compute the approximative innovation Ît(θ) = Xt− X̂t(θ) and the QLIK loss ̂̀t(θ) =
log(σ̂2

t (θ)) + Ît(θ)
2/σ̂2

t (θ),

2. update the variance of the WN σ̂2
t+1(θ) = ω + βσ̂2

t (θ) + αÎt(θ)
2,

3. predict the next observation X̂t+1(θ) = φ1Xt + · · · + φpXt−p+1 + γ1Ît(θ) + · · · +
γq Ît−p+1(θ).
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Figure 4.2: Weekly Monetary Supply forecasting in March 2015 training over 40 years,
data from https://research.stlouisfed.org. Two-step and one-step procedures on
ARMA(10,13)-GARCH(1,1).

This one-step QMLE is strongly consistent

Theorem (Francq and Zakoian (2019)). If the observations satisfy the ARMA(p,q)-GARCH(1,1)
model with θ0 ∈ Θ satisfying the condition of stationarity of the GARCH model the Han-
nan’s condition C and β < 1, then the QMLE is strongly consistent. If it satisfies the
condition for finite moments of order 4 of the gaussian GARCH model then it is asymp-
totically normal.

The advantage of this one-step procedure is that it respects the flow of the information.
However the asymptotic normality is achieved under necessary 4th order moment conditions
that may be optimistic since risky time series may not have such moment properties.
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Chapter 5
The Kalman filter

5.1 The state space models

By contrast with the AR models, it is much more difficult to find the best possible (linear)
prediction of an ARMA model. Indeed, as soon as the MA part is non degenerate, the
filter can have infinitely many non null coefficients. One way to circumvent the problem
is to consider the ARMA model as a more general linear model called state space models.
Those models have been introduced in signal processing and the best linear prediction can
be computed recursively by the Kalman’s recursion.

Definition 41. A state space linear model of dimension r with constant coefficient is given
by a system of a space equation and state equations of the form{

Xt = G>Yt + Zt, Space equation,
Yt = FYt−1 + Vt, State equation.

where (Zt) and (Vt) are uncorrelated WN with variances σ2 and Q, G ∈ Rr, F ∈M(r, r)
and Y ∈ Rr is the random state of the system.

In the cases were both (Zt) and (Vt) are SWN the state-space models have a nice inter-
pretation: the state Y is a Markov chain that governs the distribution of the observations
X in the sense that conditionally on (Yt) the Xt’s are independent. It is a specific case
of Hidden Markov model with continuous state. Notice that (Vt) is actually a WN in Rr,
meaning a weak stationary sequence of uncorrelated vectors with mean 0 ∈ Rr and covari-
ance matrix Q. Notice that the different coordinates of the space Yt = (Y1,t, . . . , Yr,t)

′ can
be correlated at each time t.

State space representations are not unique. We shall give two representations for an
ARMA (p, q) model. The first one directly shows up from the compact equation φ(T )Xt =
γ(T )Zt and it has dimension r = max(p, q + 1). Hereafter we use the convention that the
coefficients φj = 0 and γj = 0 for any j > p and j > q respectively. We can write

Xt = (1, γ1, . . . , γr−1)>Yt, Space equation,

Yt =


φ1 φ2 · · · φr

1 0 · · · 0
...

. . . . . .
...

0 . . . 1 0

Yt−1 +


Zt

0
...
0

 , State equation.

51
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In the causal case, it is possible to establish a better representation, i.e. a state space
representation with the lower dimension r = max(p, q):

Xt = (1, 0, . . . , 0)>Yt + Zt, Space equation,

Yt =


0 1 · · · 0
...

. . . . . .
...

0 . . . 0 1

φr · · · φ2 φ1

Yt−1 +


ψ1

...

...
ψr

Zt−1, State equation.

where ψ1, . . . , ψr are the coefficients of z, . . . , zr in the Laurent series ψ. For a proof of this
result, see p.470-471 of B&D. This representation is called the canonical representation. It
is very useful as Yt,h = Πt−1(Xt+h−1), the h step prediction at time t−1. Notice also that
in this representation Yt is predictable.

Any ARMA model can be represented as a state-space model. Of course the contrary is
not true. Consider for instance a time series (Xt) that could be predicted with k explana-
tory variables Xt−1. Here explanatory variables are indexed by t− 1 as they are supposed
to be observed before the variable of interest. Then one can consider the state-space model

Xt = (1, 0, . . . , 0)>Yt + Zt, Space equation,

Yt =


0 1 · · · 0
...

. . . . . .
...

0 . . . 0 1

φr · · · φ2 φ1

Yt−1 +


λ>1
...
...
λ>r

Xt−1 +


ψ1

...

...
ψr

Zt−1, State equation,

where Xt−1 is a k × r matrix that stacks the vectors Xt−1, . . . ,Xt−1 and the λi are coef-
ficients of dimension k that quantifies the linear influence of the past Xt−1 on the h step
prediction Yt−1,h at time t − 1. Such system is called ARMAX state-space representa-
tion (see Hannan and Deistler (2012)) but this parametrization is not the unique one and
suffers over-parametrization. One could prefer the parametrization such that λi = λ for
all 1 ≤ i ≤ k. It is difficult to find the good representation for such models. We will
not investigate further this model because of that drawback and we will prefer state-space
models with random coefficients, see below.

5.2 The Kalman’s recursion

To start the Kalman’s recursion, let us take an arbitrary initial values Ŷ0 and Ω0. Assume
now that we have a recursive procedure providing at each step X̂n = Πn−1(Xn), RLn =
Var (In), Ŷn = Πn−1(Yn) and Ωn = E[(Yn − Ŷn)(Yn − Ŷn)>], the covariance matrix of
the prediction error of the state Yn.

Let us compute X̂n+1 = Πn(Xn) in a recursive way. Applying the linear projection Πn

on the state equation Xn+1 = G>Yn+1 + Zn+1 it is clear that

X̂n+1 = G>Ŷn+1.

By definition of the innovation In and the decomposition of Proposition 1.2.5, we have

Ŷn+1 = Πn(Yn+1) = Πn−1(Yn+1) + PIn(Yn+1).
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The first term is computed recursively using the space equation

Πn−1(Yn+1) = FΠn−1(Yn) = FŶn.

So it remains to compute recursively the second term PIn(Yn+1). By definition of the
orthogonal projection, there exists θ ∈ Rr such that PIn(Yn+1) = θIn andYn+1−θIn ⊥ In.
So

E[(Yn+1 − θIn)In] = 0⇔ θE[I2
n] = E[Yn+1In].

We recognize the risk of linear prediction E[I2
n] = RLn . We can also compute recursively

E[Yn+1In] = E[Yn+1(G>(Yn − Ŷn) + Zn)]

= E[(FYn + Vn)(G>(Yn − Ŷn) + Zn)]

= E[(F(Yn − Ŷn)G>(Yn − Ŷn)]

= FΩnG

by orthogonality of Ŷn with Yn − Ŷn and Zn and of Zn with Vn and Yn. So arranging
all those terms, we derive the formula

Ŷn+1 = FŶn +
FΩnG

RLn
(Xn −G>Ŷn)

Let us denote Kn = FΩnG/R
L
n and call it the Kalman’s gain. Finally, in order to apply

the complete recursion, one has to compute Ωn+1 and RLn+1. Using the identity

Ωn+1 = E[Yn+1Y
T
n+1]− E[Ŷn+1Ŷ

>
n+1]

together with the state equation and the recursive formula Ŷn+1 = FŶn+KnIn, we obtain

Ωn+1 = FE[YnY
>
n ]F> + Q− FE[ŶnŶ

>
n ]F> −KnE[I2

n]Kn
>

= FΩnF
> + Q−KnG

>ΩnF
>.

To compute RLn+1, we use the identity In+1 = Xn+1−G>Ŷn+1 = G>(Yn+1−Ŷn+1)+Wn+1

and by orthogonality between Zn and the linear span of Yn+1 and X1, . . . , Xn:

RLn+1 = E[I2
n+1] = E[(G>(Yn+1 − Ŷn+1) +Wn+1)2] = G>Ωn+1G+ σ2.

Finally, we have the following theorem

Theorem (Kalman (1960)). In a state-space model with constant coefficients, if Ŷ0 and
Ω0 are well-chosen, one can compute recursively X̂n = Πn−1(Xn), RLn = E[(Xn − X̂n)2],
Ŷn = Πn−1(Yn) and Ωn = E[(Yn − Ŷn)(Yn − Ŷn)>] by the following recursion

Ŷn+1 = FŶn +
1

RLn
FΩnG(Xn −G>Ŷn)

X̂n+1 = G>Ŷn+1

Ωn+1 = FΩnF
> + Q− 1

RLn
FΩnGG

>ΩnF
>

RLn+1 = G>Ωn+1G+ σ2.
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The Kalman’s recursion has several advantages, even in for AR models when compared
to the Yule Walker approach:

• It is a recursive procedures, particularly well suited in signal processing or high-
frequency data, i.e. when observations are observed consecutively,

• Each step requires the inversion of a scalar RLn and not the entire covariance matrix,

• The recursion can handle missing values nicely.

The Kalman’s recursion has one major drawback for statistical application: It requires to
know the coefficients in the state and space equations. In practice, we want to estimate
the parameters θ = (φ1, . . . , φp, γ1, . . . , γq) of an ARMA model. One way to conciliate this
contradiction is to use the Bayesian approach. We will not pursue this approach here.

Two issues arise: the first one is about the regularity conditions that are related with
optimization problems. This fundamental issue will not be treated in the notes as a diag-
nostic of convergence is usually provided by any procedure like nlminb in R. The second
issue is about the condition on the past. As the past is not observed, it will be replaced by
some arbitrary past and then it will be fundamental to check the stability of the procedure
with respect to this arbitrary choice. This issue will constitute one major topic of these
notes.

5.3 Application to state space models

Let us consider a model that fit into the class of the state space models. The gaussian
assumption used to derive the QLik loss holds on Vt and Zt non degenerate. Notice that to
derive the QLik loss one can always restrict to the standard case Var (Z) = σ2 = 1. Then
the linear risk of prediction is the standardized one rLt = RLt /σ

2. The natural filtration of
the problem is Ft = σ(Xt, . . . , X1, Ŷ0,Ω0) as under the iid assumption the state equation
describes a Markov chain. Here θ correspond to the vector containing the parameters of
the model, i.e. the elements of F, G and Q.

Conditionally on Ft−1 the distribution of G>Yt+Zt in the model is a gaussian r.v. with
mean Πt−1(G>Yt+Zt) = G>Ŷt = X̂t(θ) and variance Var (G>(Yi− Ŷi))+1 = rLt (θ). As
both the reduced innovations I0

t (θ) = Xt − X̂t(θ) and their standardized variances rLt (θ)
are computing by the Kalman’s recursion, we have the sequential algorithm

• Initialization: θ, initial values Ŷ0(θ) and Ω0(θ).

• New observation Xn:

1. Compute the innovation I0
n(θ) = Xn − X̂n(θ),

2. Compute the next linear prediction X̂n+1(θ) and the associated standardized
risk rLn+1(θ) thanks to the Kalman’s recursion.

From this sequential algorithm, it is then simple to derive the reduced Quasi Maximum
Likelihood Estimator for state-space models:

Definition 42. The QMLE of a stat-space model is defined as a minimizer

θ̂n ∈ arg min
Θ
L0
n(θ) = arg min

Θ

n∑
t=1

I0
t

2
(θ)

σ2(θ)rLt (θ)
+ log(σ2(θ)rLt (θ))
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where I0
t (θ) and rLt (θ) are defined recursively thanks to the standardized procedure described

above assuming that R = σ2 = 1. An estimator of σ2 is provided by

σ2(θ̂n) =
1

n

n∑
t=1

I0
t

2
(θ̂n)

rLt (θ̂n)

Notice that, neglecting the optimization issues, one should write θn(Ŷ0) as the whole
procedure depends on the initial state Ŷ0(θ) chosen arbitrarily in practice, because the
initial distribution Pθ0 driving the observations is unknown.
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Chapter 6
State-space models with random
coefficients

6.1 Linear regression with time-varying coefficients

Assume that we observe some variable of interest (Xt) together with some explanatory
variables Xt−1 ∈ Rk. Here again we index the explanatory variables with t − 1 and
consider that there are observed before Xt such that one can use them to build prediction
intervals. In statistics, the most usual model to fit a prediction is the linear regression one

Xt = θTXt−1 + Zt, t ∈ Z.

The unknown parameter θ ∈ Rk is usually estimated thanks to the Ordinary Mean Squares
(OMS) which is equivalent to the MLE under the gaussian assumption on (Zt). The only
difference with the time series setting is that (Xt,Xt−1) is considered iid. Most of the
time, Y ′t−1 is even considered deterministic. One calls this setting the fixed design setting.
It is very close to the time series setting as, in the latter case, we used the principle of
conditioning on the past so that, at time t, Xt−1 is considered as fixed.

Example 16. Consider Xt−1 = (Xt−1, . . . , Xt−k)
> ∈ Rk then the linear model is equivalent

to an AR(k) model. For k = 1, the OMS∑n
t=2XtXt−1∑n
t=2X

2
t

≈ θ̂n

approximates the QMLE. The only difference is the denominator
∑n

t=2X
2
t instead of

∑n
t=1X

2
t

so that the constraint of stationarity (absolute value of the estimated coefficient less than
one) is not satisfied for the OMS.

In this chapter, we investigate the time-varying model

Xt = θTt Xt−1 + Zt, t ∈ Z.

We will first see the properties of the simple time-varying model when Xt−1 = Xt−1 and
then see how the Kalman’s recursion can be used to estimate the (time varying) parameter
(θt).
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6.2 The unit root problem and Stochastic Recurrent Equa-
tions (SRE)

One of the most interesting application of the random coefficients setting is to consider the
auto regressive case Xt−1 equals to the observation Xt (and then k = 1):

Xt = θtXt−1 + Zt, t ∈ Z.

Such model has various nice properties, depending on the behavior of the time-varying
coefficients (θt).

Consider the case (θt) is iid N (φ, β). Then, denoted θt =
√
βNt+φ with (Nt) standard

normal, we obtain the identity (in distribution)

Xt = θtXt−1 + Zt = φXt−1 +
√
βNtXt−1 + Zt, t ∈ Z.

It is an SRE, i.e. an auto-regressive model with random coefficients. Notice that the
volatility of the GARCH model satisfies such recursion too. The special case φ = 1 is not
excluded as the stationary solution condition is

E[log(|θ0|)] = E[log(|φ+
√
βN0|)] < 0.

Actually one can choose of φ as big as 1.25 by choosing accordingly the value of β. The
stationary solution of such SRE exhibits heavy tails comparable to Pareto distribution

Theorem (Goldie et al. (1991)). Under the stationary condition, there exists a unique
α > 0 such that

E[|θ0|α] = 1.

Under some other conditions on the distribution of V0, there exists a coefficient c > 0 such
that

P(X0 > x) ∼x→∞
c

2
x−α, P(X0 ≤ −x) ∼x→∞

c

2
x−α.

The parameter α is the index of heavy tail. The time series (Xt) admits finite moments
of order p < α and infinite moments of order p > α. Goldie Theorem is very important
as the SRE solution appears as natural heavy-tailed time series including risk indication
through α.

For φ = 1, one can easily check that necessarily α < 2 meaning that the time series
(Xt) does not have finite variance. The second order stationarity condition φ2 + β < 1 is
not satisfied. An AR model with a random coefficient models naturally an ARCH effect:

Proposition (Klüppelberg et al. (2004)). The SRE with (Zt) gaussian WN(ω) with ω > 0
is equivalent to the AR(1)-ARCH(1) model

Xt = φXt−1 + Zt,

Zt = σtWt,

σ2
t = ω + βX2

t−1, t ∈ Z,

where Wt are gaussian WN(1).
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Take care that the Zt of the SRE and AR-ARCH representation do not coincide (even
in distribution).

Another very interesting time-varying autoregressive model is when (θt) itself is solution
of an AR(1) model

θt = Fθt−1 +Hηt.

The model is called doubly-stochastic. It also exhibits heavy tailed phenomenon and its
extremal behavior is really sensitive to the values of F and H. Notice that the previous
example corresponds to F = 0, H =

√
β and ηt = φ/

√
β +Nt.

Those models exhihbit heavy tails because E[θ0] ≈ 1: the random multiplicative coeffi-
cient is fluctuating around 1 in the AR(1) representation. In many economics applications,
it is relevant to consider such models as, when fitting an AR(1) with constant coefficients
φ, the estimator of this coefficient is often close to 1. We then say we face the unit
root problem because the values |φ| ≥ 1 are excluded from the classical inference to pro-
duce stable estimation. It is a well-known problem that has been treated in many ways;
one can for instance consider Integrated ARMA models (ARIMA) that admits an unstable
state-space representation associated to a stable Kalman’s recursion or one can also use the
cointegration analysis. Here we will develop a third approach based on Kalman’s recursion.

6.3 State space models with random coefficients

The main idea is to consider the random coefficients (θt) as hidden states following a
recursive equation. Let us consider the state-space model{

Xt+1 = XT
t θt + Zt+1 Space equation,

θt+1 = Fθt + Vt+1 State equation,

where the coefficients (Xt) are random and (Vt) and (Zt) are SWN(Q) and SWN(σ2),
respectively. The main assumption is that (Xt) is stationary ergodic sequences adapted to
the filtration Ft = σ(ηt, Zt, ηt−1, Zt−1, . . .). Note that there is a shift in the indices in the
space equation: we first observe Xt in order to predict Xt+1.

Under the gaussian assumption, working recursively conditionally on Ft and using
that for normal vectors orthogonality and independence is equivalent, one can extend the
Kalman’s recursion.

Theorem (Kalman (1960)). In a state-space model with random coefficients, under the
normal condition and if Ŷ0 and Ω0 are well-chosen, one can compute recursively θ̂n =
Πn(θn) and the standardized risk Ωn = E[(θn − θ̂n)(θn − θ̂n)>] by the following recursion
given the observation of (Xn,Xn−1)

θ̂n = Fθ̂n−1 +
1

rLn
FΩn−1X

T
n−1(Xn −XT

n−1θ̂n)

Ωn = FΩn−1F
> + Q− 1

X>n−1Ωn−1Xn−1 + σ2
FΩn−1Xn−1X

>
n−1Ωn−1F

> .

The main difference with the previous recursion is that asXn is observed simultaneously
withXn one can dynamically estimateXn+1 using X̂n+1 = XT

n θ̂n together with the reduced
risk RLn+1 = X>nΩnXn + 1. Noticing that under the gaussian conditional assumption
we have X̂n+1 = E[Xn+1 | Fn, θ̂0,Ω0] and RLn+1 = Var (Xn+1 | Fn+1, θ̂0,Ω0) when the
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arbitrary initial values for θ̂0, and Ω0 are included in the filtration, one can compute the
QLik contrast recursively as before.

Assume that the state-space model is parametrized over some hyperparameters λ ∈ Rd.
Let θ̂0 be some starting coefficient corresponding to the (unique) most likely fit on the
observations, i.e. the usual OLS. The reduced QLik L0

n is then computed from the recursion:

• Initialization: θ̂0 and Ω0

• New observation Xn:

1. Compute the innovation In(λ) = Xn − X̂n(λ),
3. Compute the next linear prediction X̂n+1(λ) and the associated risk RLn+1(λ)

thanks to the Kalman’s recursion.

From this sequential algorithm, it is then simple to derive the reduced QMLE for state-
space models with random coefficients

λ̂n ∈ arg min
Θ
Ln(λ) = arg min

Θ

n∑
t=1

It
2(λ)

RLt (λ)
+ log(RLt (λ))

where It(λ) and RLt (λ) are defined recursively as above. Here

σ2 =
1

n

n∑
t=1

It
2(λ) ,

is a good estimator of σ2.

6.4 Dynamical models

The common choice Ft = Ik is made in this prospect as it does not require any calibration.
It corresponds to the dynamical models used in Bayesian forecasting. The main step of
the Kalman’s recursion

θ̂n = θ̂n−1 +
1

RLn
Ωn−1X

T
n−1(Xn − X̂n)

coincides with a stochastic Newton recursive method. More precisely, if one consider the
problem of minimization of the quadratic loss

θ 7→ `t(θ) = (Xt − θTXt−1)2

then one can use a stochastic gradient approach based where

∇`t(θ) = −2Xt−1(Xt − θTXt−1), ∇2`t(θ) = 2Xt−1X
>
t−1.

Then the common Stochastic Newton algorithm updates as

θ̂n+1 = θ̂n − 2η
( n∑
t=1

∇2`t(θ)
)−1
∇`n(θ̂n) .

This algorithm converges may converge to the unique minimum of E[`0] under strong
convexity assumption at an optimal rate n−1 when the learning rate is well chosen. One
can identify

2η
( n∑
t=1

∇2`t(θ)
)−1

= O
(( n∑

t=1

XtX
>
t

)−1)
and

1

RLn
Ωn−1
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Figure 6.1: Quarterly Monetary Supply one-step forecasting by Kalman recursion on train-
ing sample from 1959 to 2014, data from https://research.stlouisfed.org

in the Kalman filter when Q is assumed to be null. The case Q identically null called the
static case is rather restrictive in view of the state equation θn+1 = θn. It corresponds to
the special case where the coefficients θt are constant. But then the Kalman filter produces
a gradient step that approximate the (optimal) Newton step without requiring second order
matrices nor inversion of matrices.

Moreover, the Kalman filter offers much more flexibility than the common gradient
based algorithms as it allows for non-identically null Q. In such cases the Kalman filter
does not converges (as there is no constant coefficient to converge to). It rather "tracks"
the hidden random state θn and one talks about "tracking" algorithms.
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Figure 6.2: Quarterly Monetary Supply forecasting by two-step, onestep
ARMA(5,6)-ARCH(1) and dynamic model on ten quarters from 2014, data from
https://research.stlouisfed.org. The dynamic model uses four lagged data and
past consumer consumption, treasury bills and surplus federal government as explanatory
variables. The coefficients are static except the one of the consumer consumption.
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