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Chapter 1
Conditional expectation

These lecture notes are preceded by some preliminaries on the important notion of condi-
tional expectation, useful for the rest of the course.

1.1 Conditioning as a projection

Let (Ω,F ,P) be a probability triplet. The sample space Ω is the space of any outcomes,
the event space F constitutes a σ-algebra of events A (closed under complement and
countable union). The probability function P that assigns to each eventA ∈ F a probability
0 ≤ P(A) ≤ 1 .

The probability function must satisfies the countable additivity assumption meaning
that for every countable union of disjoint sets An ∈ F , n ≥ 1, we have

P(∪n≥1An) =
∑
n≥1

P(An). (1.1)

We move to the definition of the random variable (rv).

Definition 1. A random variable is a function X: Ω 7→ R such that is measurable:

X−1((−∞, x]) = {ω ∈ Ω ; X(ω) ≤ x} ∈ F .

We have

P(X−1((−∞, x])) = P({ω ∈ Ω ; X(ω) ≤ x}) = P(X ≤ x) = FX(x).

The function FX is called the cumulative distribution function of X. In these notes, it will
be convenient to work on FX rather than P as much as possible. It is possible since

Proposition. The distribution of the rv X is characterized by FX .
The cdf FX is a cadlag (continue à droite, limite à gauche) function.
We define FX(a, b] = FX(b) − FX(a) and extend the measure FX(A) to any Borel set

A ⊂ R using the relation (1.1).
The expectation E[h(X)] is the Lebesgue integral∫

R
h(x)dFX(x) = lim

n→∞

∫
R
hn(x)dFX(x) = lim

n→∞

n∑
j=1

cjFX(An)

where h is any positive measurable function approximated by hn =
∑n

j=1 cj I1An with Borel
sets An and cj > 0.
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4 CHAPTER 1. CONDITIONAL EXPECTATION

We can extend the notion of expectation to any integral function h such that E[|h(X)|] <
∞ by considering the positive and negative parts of h. In particular from FX one can com-
pute the moments such as

E[X2] =

∫
R
x2dFX(x) .

This second order moments can be infinite!
The space L2(R) gather the rv with finite second order moments.

Definition 2. The space L2(R) is defined as the set of square integrable rv:

L2(R) = {X rv on R : E[X2] <∞} .

We say that X = Y a.s. iff P(X = Y ) = 1

The right notion for considering L2 is the one of Hilbert space:

Definition 3. An Hilbert space is a complete vector space equipped with the scalar product
< ·, · >.

Any finite dimensional vector space Rd is an Hilbert space. The scalar product is

< x, y >=
d∑
i=1

xiyi , x, y ∈ Rd.

An Hilbert space might have infinite dimension. Indeed L2 is an example

Proposition. The space L2(R) is an Hilbert space equipped with < X,Y >= E[XY ].

On any Hilbert space H we define the notion of orthogonal projection. Let ‖x‖2 =<
x, x >, x ∈ H, H an Hilbert space.

Proposition. Let L be any closed sub-vector space of H. There exists a unique πL(x) ∈ L
such that ‖x − z‖ ≥ ‖x − πL(x)‖ for any z ∈ H. We have < x − πL(x), z >= 0 for any
z ∈ L and πL(x) is the orthogonal projection of x on L. Finally the Pythagorean theorem
applies

‖z − x‖2 = ‖z − πL(x)‖2 + ‖πL(x)− x‖2 , z ∈ L .

The conditional expectation can be seen as a projection. Let H = L2(R) and L =
{h(Y ) : h Borel function and E[h(Y )2] <∞} for some rv Y . Then

Proposition. The space L is a closed sub-vector space of L2(R) and the orthogonal pro-
jection πL(X) is called the conditional expectation of X on Y and it is denoted E[X | Y ].

Remark. There exists a measurable function h∗ such that E[X | Y ] = h∗(Y ) a.s.

We have E[(X − E[X | Y ])2] ≤ E[(X − h(Y ))2] for any h measurable.

The properties of the projection are inherited by the conditional expectation:

Proposition. The conditional expectation E[X | Y ] is a rv such that E[(E[X | Y ])2] <∞.
We have the tower property E[E[X | Y ]] = E[X] and Var (E[X | Y ]) ≤ Var (X).
For any measurable function h we have E[h(Y )(X − E[X | Y ])] = 0.
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Note that one can extend the previous notions to Rd: X ∈ L2(Rd) is the space of square
integrable random vectors such that E[‖X‖2] < ∞, the conditional expectation E[X | Y ]
is a random vector in L2(Rd) such that E[E[X | Y ]] = E[X] and

E[‖E[X | Y ]− E[X]‖2] ≤ E[‖X − E[X]‖2].

However the notion of norm in L2(Rd) is of different nature than the notion of variance
of X that is a d× d matrix

Var (X) = E[(X − E[X])(X − E[X])T ].

1.2 Conditioning as an integration

Let X be a rv with cdf FX . We say that X is continuous (absolutely continuous wrt the
Lebesgue measure) if FX admits a density fX so that

E[h(X)] =

∫
R
h(x)dFx(x) =

∫
R
h(x)fX(x)dx ,

for any positive measurable function h.

Remark. We will extend the notion of density to cdf absolutely continuous wrt other mea-
sures: X is a discrete rv if she takes value in {xi}i∈N, then it admits a density fX with
respect to the counting measure ν =

∑
i∈N ε{xi} where ε{x}(A) = 1 if x ∈ A, = 0 else. We

have fX(xi) = P(Xi = xi), i ∈ N and

E[h(X)] =

∫
R
h(x)dFX(x) =

∑
x∈{xi,i∈N}

h(x)fX(x) =

∫
R
h(x)fX(x)dν(x) .

The density satisfies fX(x) > 0 whenever x ∈ Supp(X) where the support Supp(X) is
the Borel set such that

P(X ∈ Supp(X)) = 1, P(X /∈ Supp(X)) = 0 .

Moreover
∫
Supp(X) fX(x)dν(x) = 1. By convention fX(x) = 0 for x /∈ Supp(X).

Proposition. Any positive function on a Borel set S that sum up to 1 is a density (extended
on R by being = 0 elsewhere) of a rv X so that Supp(X) = S.

Let X and Y admitting densities fX and fY (wrt to 2 measures ν1 and ν2 on R).
Assume that (X,Y ) ∈ R2 admits a density (wrt the product measure ν1ν2).

Definition 4. The conditional density of X given Y = y, y ∈ Supp(Y ), is defined as

fX|Y=y(x) =
fX,Y (x, y)

fY (y)
.

The function fX|Y=y is a density since
∫
R fX,Y (x, y)dν1(x) = fY (y) and its support is

included in Supp(X).
It is not a density wrt y!
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Definition 5. The rv X | Y = y is defined by its density fX|Y=y.
Assuming that it exists, we define E[X | Y = y] as the expectation of X | Y = y:

E[X | Y = y] =

∫
R
xfX|Y=y(x)dν1(x) .

The conditional expectation E[X | Y = y] is not a rv!
It is deterministic.

For any Borel set A such that P(Y ∈ A) 6= 0 and E[X I1Y ∈A] < ∞, we extend the
previous notions to

fX|Y ∈A(x) =

∫
A fX,Y (x, y)dν2(y)∫
A fY (y)dν2(y)

and
E[X | Y ∈ A] =

∫
R
xfX|Y ∈A(x)dν1(x) .

We have
E[X | Y ∈ A] =

E[X I1Y ∈A]

P(Y ∈ A)
.

If E[|X|] <∞ we denote h∗(y) = E[X | Y = y] for all y ∈ Y . Then E[X | Y ] = h∗(Y )
is called the conditional expectation and satisfies the tower property.

Theorem. If E[X2] < ∞ (X ∈ L2(R)) then E[X | Y ] coincides with the orthogonal
projection of X on L = {h(Y ) : h Borel function and E[h(Y )2] <∞}.

Proof. We check the orthogonal property E[(X − E[X | Y ])h(Y )] = 0 for any measurable
function h and E[X | Y ] =

∫
R xfX|Y (x)dν1(x). We have

E[E[X | Y ]h(Y )] =

∫
R
E[X | Y = y]h(y)fY (y)dν2(y)

=

∫
R

∫
R
xfX|Y=y(x)dν1(x)h(y)fy(y)dν2(y)

=

∫
R

∫
R
xh(y)fX|Y=y(x)fy(y)dν1(x)dν2(y)

=

∫
R2

xh(y)fX,Y (x, y)d(ν1ν2)(x, y)

= E[Xh(Y )] .

The properties of the integral are inherited by the conditional expectation.

Proposition. We have

1. The support of E[X | Y ] is included in the one of X,

2. Positivity: If X ≤ Z a.s. then E[X | Y ] ≤ E[Z | Y ] a.s.,

3. Jensen’s inequality: if h is a convex function then

h(E[X | Y ]) ≤ E[h(X) | Y ] , a.s.

4. Linearity: for any measurable function h we have

E[h(Y )X | Y ] = h(Y )E[X | Y ] , a.s.
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5. Hölder inequality: for any p, q > 1 such that p−1 + q−1 = 1 we have

E[|XZ| | Y ] ≤ (E[|X|p | Y ])1/p(E[|Z|q | Y ])1/q , a.s.

Example 1 (Linear regression). Assume the linear model with random design Yt = XT θ+ε
such that θ, X ∈ Rd, Y, ε ∈ R, X and ε independent of X and E[ε] = 0. Then E[Y | X] =
XT θ and it is the best L2(R)-approximation of Y given X when Var (X) and Var (ε) are
finite.

Example 2 (Logistic regression). Consider the binomial variable Y ∈ {0, 1} and X any
continuous rv. Then (Y,X) admits a density wrt (ε0 + ε1)× Lebesgue and

fY |X=x(y) =
f(y, x)

f(x)
, y = 0, 1 .

It is the density of a Bernoulli variable of parameter E[Y | X = x] = h∗(x). The function
h∗ with value in [0, 1] cannot be linear (logistic for instance).

Recall that the conditional probability of A ∈ F given B ∈ F with P(B 6= 0) is defined
as

P(A | B) =
P(A ∩B)

P(B)
.

Let X = I1A for some event A ∈ F . Then X follows a Binomial distribution such that
P(X = 1) = P(A).

Definition 6. We denote

P(A | Y ) = E[X | Y ] = h∗(Y )

which is a rv on [0, 1] such that E[P(A | Y )] = P(A).
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Chapter 2
Pseudo Random Number Generator

In order to simulate any rv one needs to introduce some randomness in a computer that
is, by definition of a machine, deterministic.

The basic continuous distribution is the uniform one on [0, 1].

Definition 7. A rv U is uniform on [0, 1], U ∼ U [0, 1], if FU (x) = x for x ∈ [0, 1].

The rv U is continuous since its cdf is absolutely continuous wrt the Lebesgue measure
FU ({x0}) = FU (x0)− limx↑x0 FU (x) = 0 (by continuity of FU ).

It admits a density fU (x) = 1 over its support Supp(U) = [0, 1].

Definition 8. A (simple) recursive algorithm is repeating the same iterations at each step
returning an output. The iterations at each step 1 ≤ k ≤ n (n is called the epoch) may
depend on the preceding step k − 1.

By definition, a recursive algorithm is scalable in the epoch, i.e. its complexity is
proportional to n (and not na with a > 1). We write its complexity O(n) where O
means up to some deterministic constant. For a recursive algorithm, the factor of n in the
complexity depends on each iteration.

Definition 9. The efficiency of a recursive algorithm is the number of iteration of each
step.

A recursive algorithm that generates a sample of uniform rv is called a PRNG.

Definition 10. A Pseudo Random Number Generator (PRNG) is a deterministic algo-
rithm A such that given n returns U1, . . . , Un close to iid U [0, 1] rv.

Remark. Since a PRNG is a deterministic recursive algorithm, it has:

• a seed for n = 1 determining U1 which fix the first value as arbitrary as possible,

• a recursive procedure A(Un) = Un+1 to design Un+1 as independent as possible as
U1, . . . , Un,

• a periodicity, the first n such that Un = U1 whatever is the seed.

The seed is usually a deterministic function of the internal clock of the processor.
If one fixes the seed (seed(·) in R), any run A is the same.
In order to ensure that Un+1 is as independent as possible of the past value (but

deterministic due to the restriction of the machine) one uses number theory

11



12 CHAPTER 2. PSEUDO RANDOM NUMBER GENERATOR

Definition 11. A linear congruential PRNG is sampling Ui recursively from the seed U1

thanks to the recursion

Xi ← aXi−1 + b mod(m)

Ui ← Xi/m

for (a, b,m) well-chosen.

A linear congruential PRNG is a recursive algorithm with efficiency O(1), i.e. each
iteration is a multiplication and a division with remainder. Such PRNG generates elements
of the grid {0, . . . , (m− 1)/m}, {1, . . . , (m− 1)/m} in the multiplicative case.

Proposition. The best possible period of such PRNG is m, m− 1 if the PRNG is multi-
plicative, i.e. b = 0.

Number theory provides optimal period conditions for such PRNG.

Theorem. A necessary condition for a multiplicative PRNG to have period m− 1 is that
m is a prime number.

A sufficient condition for a multiplicative PRNG to have period m − 1 is that a is a
primitive root of m for the multiplicative group

a(m−1)/p 6= 1 , mod(m)

for any prime factor p of m− 1.

The strategy is then to find a prime number m that is large but such that m− 1 does
not have many prime factors in order to check easily the sufficient condition. Such prime
numbers are of the Mersenne type 2M − 1 where M is an auxiliary prime number.

Example 3. • rand(·) in C, m = 231 − 1,

• drand48(·) in C, m = 248 − 1,

• RANDU(·) by IBM, m = 231 − 1, b = 0,

• rand(·) by Mapple, m = 1012 − 11, b = 0.
R uses a Mersenne-Twister PRNG such that m = 219937 − 1!!
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Histogram for RandU that shows uniform distributions of the marginal and 3d-plot of
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Chapter 3
Simulation of a random variable

3.1 The inverse transform sampling

From now we assume that a PRNG can sample (U1, . . . , Un) iid Unif(0, 1).

3.1.1 The generalized inverse

Let X be a rv with cumulative distribution function FX .

Definition 12. The generalized inverse of the cadlag non-decreasing function FX : R 7→
[0, 1], denoted F←X : [0, 1] 7→ R, is defined as

F←X (y) = inf{x ∈ R; FX(x) ≥ y} , y ∈ (0, 1] .

Here we use the convention inf ∅ = +∞. The generalized inverse F←X is well defined
and coincides with the inverse F−1

X when FX is invertible, which is equivalent of being
increasing and continuous. Note that

{(u, x) ∈ (0, 1]× R; u ≤ FX(x)} = {(u, x) ∈ (0, 1]× R; F←X (u) ≤ x} . (3.1)

Example 4. Let X ∼ Exp(λ), λ > 0, then FX(x) = 0, x < 0, FX(x) = 1 − exp(−λx),
x > 0 then F←X (y) = λ−1 log(1/(1− y)) for 0 < y ≤ 1.

Let X ∼ Binom(p), 0 < p < 1, then FX(x) = 0, x < 0, FX(x) = 1 − p, 0 ≤ x < 1,
FX(x) = 1, x ≥ 1 then F←X (y) = 0 for 0 < y ≤ 1− p and F←X (y) = 1 for 1− p < y ≤ 1.

3.1.2 The inverse transform sampling

We have the useful proposition

Proposition. If U ∼ U(0, 1) then F←X (U) is distributed as FX .

Proof. Using (3.1), we have P(F←X (U) ≤ x) = P(U ≤ FX(x)) = FU (FX(x)) = FX(x) .

Example 5. Let X ∼ Binom(p), 0 < p < 1 then F←X (U) = I1(1−p,1](U) is Binom(p)
distributed when U ∼ U(0, 1).

13



14 CHAPTER 3. SIMULATION OF A RANDOM VARIABLE

Algorithm 1: The inverse transform sampling
Parameters: n the number of samples, FX the target distribution.
Do

1. Sample U1, . . . Un iid U(0, 1) (runif(n))

2. Apply the inverse transform F←X so that Xi = F←X (Ui), 1 ≤ i ≤ n.

Return (X1, . . . , Xn).
When the generalized inverse F← is explicit, the inverse transform is a recursive algo-

rithm with efficiency O(1). However it has some serious limitation.

Remark (Limitation of the inverse transform).

1. When no explicit formula on the distribution FX is known (as X ∼ N (0, 1) with
distribution Φ only known through its density ϕ),

2. When FX involves an infinite number of steps and is intractable in practice. For
instance X discrete with countably many {xk} with P(X = xk) > 0 for all k ≥ 0.

3.1.3 Inverse transform adapted to discrete rv

Let X be discrete with countably many {xk}k∈N with P(X = xk) > 0 for all k ≥ 0.
Sort xk such that x(k) satisfies

P(X = x(k−1)) > P(X = x(k)) > P(X = x(k+1))

for all k ∈ N.
Algorithm 2: Recursive test procedure
Sample Ui and do the recursive test procedure from k = 0

• If Ui ≤ P(X = x(1)) + · · ·+ P(X = x(k)) then Return X = x(k)

• Else k ← k + 1.

There is k tests with probability P(X = x(k)) on average thus the total number of tests
for sampling one rv is ∑

k∈N
kP(X = x(k)).

This number is potentially infinite... If it is finite one says that the efficiency of the recursive
algorithm is

OP

(∑
k∈N

kP(X = x(k))
)
,

Where OP means that each step requires a random number of iterations with finite mean.

3.2 The reject method

3.2.1 Proposal distribution

Let X be distributed as fX (determined by its density). Let Y be distributed as a proposal,
i.e. Y is easily sampled (uniform or inverse transform).

Definition 13. The proposal dominates the target distribution when ∃M > 0 such that
fX(x) ≤MfY (y).

Note that necessarily M ≥ 1 and X is absolutely continuous wrt Y .
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3.2.2 The rejection sampling

Algorithm 3: The rejection sampling
Parameters: n the number of samples, fX the target density and a dominating
proposal fY .

While k ≤ n Do

1. Sample U ∼ U(0, 1) (runif(1)) and Y ∼ fY independently,

2. • If U ≤ fX(Y )/(MfY (Y )) then Xk = Y and k ← k + 1,

• Else reject and Return to 1.

Return (X1, . . . , Xn).

Proposition. For each k the rejection sampling returns Xk after Tk iterations where Tk
is a rv Geom(1/M) and Xk ∼ FX .

Corollary. The rejection sampling returns (X1, . . . , Xn) iid FX using
∑n

k=1 Tk sampling
of uniform and proposal rv.

Proposition. The efficiency of the rejection sampling is OP(M).

Example 6. Consider the truncated normal distribution

fX(x) =

{√
2
π exp(−x2

2 ), if x > 0,

0, else.

Consider the proposal Y ∼ Exp(1) so that

fX(x)

fY (x)
≤M ≈ 1, 316.

The efficiency of the rejection sampling is OP(1, 316).

Note that one can recover the gaussian rv by multiplying N = I1U>1/2X + I1U≤1/2X for
U ∼ U(0, 1) independent of X.
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with exponential distributed proposal.
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3.3 Sampling specific distributions

3.3.1 Gaussian rv

For 2 standard gaussian independent rvs X1 and X2, the gaussian vector (X1, X2) is
isotropic, i.e. its distribution

f(X1,X2)(x1, x2) =
1

2π
exp(−(x2

1 + x2
2)/2) , (x1, x2) ∈ R2 ,

solely depend on the square of the radius ‖(x1, x2)‖2 = x2
1 + x2

2 and not on the angle
arctan(x1/x2)

Proposition. Let R ∼ Exp(1/2) and θ ∼ U(0, 2π) independent. Then X1 =
√
R cos(θ)

and X2 =
√
R sin(θ) are 2 independent rvs N (0, 1).

Remark. A χ2
n−distribution is the distribution of

∑n
i=1X

2
i for X1, . . . , Xn iid N (0, 1).

It is also a Γ(n/2, 1/2) distribution where a Γ(n, λ) distribution is given by its density

fΓ(x) =
λk

Γ(k)
xk−1 exp(−λx) I1(0,∞)(x) .

Then a χ2
2−distribution is also a Exp(1/2)-distribution.

Algorithm 4: Box-Muller sampling
The aim is to sample standard gaussian rv N (0, 1) as efficiently as we can.
Parameters: n the (even) number of samples.
Do

1. Sample U1, . . . , Un iid U(0, 1) (runif(n)),

2. Inverse transform U1, . . . Un/2 into R1, . . . , Rn/2 iid Exp(1/2), Un/2+1, . . . Un into
θ1, . . . , θn/2 iid U(0, 2π)

3. Compute X2k =
√
Rk cos(θk) and X2k+1 =

√
Rk sin(θk) .

Return (X1, . . . , Xn).

Proposition. The efficiency of the Box-Muller sampling is O(1)!

A gaussian rv X = N (µ, σ∈) is given by its distribution

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, x ∈ R .

From (Y1, . . . , Yn) obtained by the Box-Muller sampling we get (X1, . . . , Xn) applying

Xk = µ+ σYk , 1 ≤ k ≤ n .
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Box-Muller algorithm sampling a couple of centered gaussian random variables. On the
left, the original BM algorithm, on the right the cosinus and sinus functions are replaced
with a rejection step. The two distributions are identically isotropic gaussian random
vectors.

3.3.2 Poisson distribution

The discrete rv X is Pois(λ), λ > 0, distributed if

P(X = k) =
λk

k!
exp(−λ), k = 0, 1, . . .

Proposition. Let (Ek)k≥1 be iid Exp(λ), λ > 0 then

P(Sn ≤ 1 ≤ Sn+1) =
λn

n!
exp(−λ) , Sn =

n∑
k=1

Ek, n ≥ 0 .

Algorithm 5: Poisson sampling
Parameters: n the number of samples,.
While k ≤ n Do

1. Xk ← 0, S ∼ Exp(λ),

2. While S < 1 Do

• Sample E ∼∼ Exp(λ),

• Compute S ← S + E and Xk ← Xk + 1,

Return (X1, . . . , Xn).

Its efficiency is OP(1 + λ).

3.3.3 Mixture distributions

Definition 14 (Mixture distribution). A mixture distribution consists in two steps of
randomness;
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• The mixture components which are conditional densities fX|Y=y,

• Mixtures weights which correspond to the mixing distribution fY (y) with support Y.

Then X ∼
∫
Y fX|Y=yfY (y)dν(y) is following a mixture distribution.

Algorithm 6: Mixture sampling
Parameters: n the number of samples.
For 1 ≤ i ≤ n Do

1. Yi ∼ fY ,

2. Xi ∼ fX|Yi

Return (X1, . . . , Xn).

Example 7 (Student’s distribution as a mixture distribution). The Student’s distribution
with df k > 0 is given by the distribution

fT (t) =
1√
kπ

Γ((k + 1)/2)

Γ(k/2)

(
1 +

t2

k

)−(k+1)/2
, t ∈ R .

We also have T ∼ N (0, k/Y ) where Y ∼ χ2
k. At each step 1 ≤ i ≤ n we simulate

1. (Nj)1≤j≤k iid N (0, 1)

2. Yi =
∑k

j=1N
2
j ,

3. Ti ∼ N (0, k/Yi), i.e. Ti = N ′
√
k/Yi for N ′ ∼ N (0, 1)independent of (Nj)1≤j≤k.



Part III

Monte Carlo methods
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Chapter 4
Crude Monte Carlo approximation and
accelerations

4.1 Monte-Carlo approximation error

Let h be an integrable function, we want to estimate

I =

∫
h(x)dx,

and the primitive of h is unknown. One can use

1. Numerical (deterministic) approximation discretizing Supp(h) and approximating I
by n−1

∑n
i=1 h(xi),

2. Monte-Carlo (random) approximation drawing Y1, . . . , YN ∼ U(Supp(h)) and ap-
proximating I by |Supp(h)|N−1

∑N
i=1 h(Yi) where |Supp(h)| is the Lebesgue measure

of Supp(h).

The Monte Carlo approximation is based on to fundamental asymptotic theorem for
iid sequences. The first one is the Strong Law of Large Number (SLLN) that justifies the
expression of the Monte Carlo approximation:

Theorem (SLLN). Consider Y1, . . . , YN iid and h such that E[|h(Y )|] <∞ then

1

N

N∑
i=1

h(Yi)→
∫
h(y)fY (y)dν(y) , N →∞, a.s.

21
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Visualization of the convergence in the SLLN toward the expectation 1/2 of the sample
means of Exp(2) distribution.

For Monte Carlo method we get as N →∞

1

N

N∑
i=1

h(Yi)→
∫
h(y)fY (y)dy =

∫
h(y)

1

|Supp(h)|
dy , a.s.

Numerical and (uniform) Monte Carlo methods are very close converging methods but
the second one is much more flexible.

Definition 15. Consider fY the uniform distribution on |Supp(h)| < ∞ such that g =
h/fY is integrable, sample Y1, . . . , YN iid fY then

Î
(MC)
N =

1

N

N∑
i=1

g(Yi)→ I , a.s.

The estimator Î(MC)
N is called the crude Monte Carlo estimator of I.

Any Monte Carlo approximation has an error. Its analysis is based on the second
fundamental asymptotic theorem for iid sequences, namely the Central Limit Theorem
(CLT):

Theorem (CLT). Consider Y1, . . . , YN iid and g such that E[g(Y )2] <∞ then√
N

Var (g(Y ))

( 1

N

N∑
i=1

g(Yi)−
∫
g(y)fY (y)dν(y)

)
→ N (0, 1) ,

in distribution.
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Visualization of the gaussian approximation in the CLT of the sample mean distribu-
tions of Exp(2) samples.

Given a level of approximation ε > 0, if Î(MC)
N = N−1

∑N
i=1 g(Yi) with Var (g(Y )) <∞

then we have

P(|Î(MC)
N − I| > ε) = P(

√
N/Var (g(Y ))|Î(MC)

N − I| > ε
√
N/Var (g(Y )))

≈ 2(1− Φ(ε
√
N/Var (g(Y ))))

≈ 2φ(ε
√
N/Var (g(Y )))

√
Var (g(Y ))/(Nε2)

≈ o(exp(−ε2N/Var (g(Y )))).

Thus the approximation is controlled when ε2 ≈ Var (g(Y )))/N . We denote |Î(MC)
N − I| =

OP(
√

Var (g(Y ))/N)

Recipe: Given a satisfactory approximation level ε > 0, simulate N of the order 1/
√
ε

providing that Var (g(Y )) stays small.
Thus the only requirements in the crude Monte Carlo methods are to sample easily

the proposal fY and to keep Var (g(Y )), i.e.
∫
h(y)2fY (y)dy small. The first requirement

is deeply link with sampling methods from the previous chapter, the second one yields to
seek variance reduction.

4.2 Link between sampling and crude Monte Carlo approxi-
mation

Consider I = |∆| =
∫

I1∆(x)dx then considering a rectangle ∆ ⊂ R, we have the Monte
Carlo method
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Algorithm 7: Monte Carlo approximation based on acceptation
Parameters N the number of iterations.
For 1 ≤ i ≤ N Do

1. Sample Yi ∼ U(R),

2. If Yi ∈ ∆ then Xi = Yi.

Return I(MC)
N = |R|n/N where n = #{Xi}.

The Monte Carlo algorithm shares some similarities with the reject sampling since the
different steps are the same. However it is also different since now the number of runs N
is deterministic and the number of acceptances n is random. That Xi ∼ U(∆) as from
the rejection sampling allows to estimate the normalized constant |∆| of the density of the
uniform distribution thanks to the acceptance rate n/N .

Proposition. The reject sampling generates a (random size) n sample Xi ∼ U(∆) such
that

Î
(MC)
N = |R|n/N =

1

N

N∑
i=1

|R| I1∆(Yi)→ |R|
∫

I1∆(y)dy/|R| = I

is a OP(
√
|R||∆|(1− |∆|/|R|)/N) approximation.

Note that luckily the error of approximation depends only on N , the number of it-
erations in the Monte Carlo approximation, and not on the random acceptance number
n

Based on this reject principle one can approximate
∫
h(x)dx for any h ≥ 0 thanks to

the ratio sampling:

Theorem. Assume that h ≥ 0 is integrable then Ch = {(u, v) ∈ R2; 0 ≤ u ≤
√
h(v/u)} is

finite, i.e. |Ch| <∞.

In practice one has to assume that x2h(x) <∞ so that the constants

a =
√

sup{h(x); x ∈ R}

b+ =
√

sup{x2h(x); x ≥ 0}

b− = −
√

sup{x2h(x); x ≤ 0}

are well defined and then Ch ⊂ [0, a]× [b−, b+].
Algorithm 8: Ratio MC approximation
Parameters: N the number of iterations, h the integrand.
For 1 ≤ i ≤ N Do

1. Sample Ui, Vi two independent rv U(0, 1),

2. Transform U = aU1, V = b− + (b+ − b−)U2

3. If U, V /∈ Ch then Xi = U/V .

Return Î(MC)
N = 2a(b+ − b−)n/N where n = #{Xi}.

Proposition. The ratio sampling generates X1, . . . , Xn iid such that fX ∼ h/
∫
h.

Moreover we have that
Î

(MC)
N = 2a(b+ − b−)n/N

is a OP(
√

2a(b+ − b−)
∫
h(x)dx/N) approximation.
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The use of the ratio method for sampling a β-distribution. No need of the knowledge
of the normalizing constant!

4.3 Variance reduction

4.3.1 Antithetic variance reduction method

Consider Î(1)
N and Î(2)

N 2 Monte Carlo approximation of I then

Var ((Î
(1)
N + Î

(2)
N )/2) =

1

4
(Var (Î

(1)
N ) + Var (Î

(2)
N ) + 2Cov(Î

(1)
N , Î

(2)
N )).

Thus if Cov(Î
(1)
N , Î

(2)
N )) ≤ 0 then one accelerates

Var ((Î
(1)
N + Î

(2)
N )/2) ≤ (Var (Î

(1)
N ) + Var (Î

(2)
N ))/4

Theorem (Antithetic variables). Consider g monotonic and U ∼ U(0, 1) then

Cov(g(U), g(1− U)) ≤ 0 .

We say that U and 1− U are antithetic.

We say that U and 1− U are antithetic.

Proof. Consider U ′ iid to U . Then Cov(g(U)−g(U ′), g(1−U)−g(1−U ′)) = 2Cov(g(U), g(1−
U)) and

Cov(g(U)− g(U ′), g(1− U)− g(1− U ′)) =E[(g(U)− g(U ′))(g(1− U)− g(1− U ′))]
=E[(g(U)− g(U ′))(g(1− U)− g(1− U ′)) I1U>U ′ ]

+ E[(g(U)− g(U ′))(g(1− U)− g(1− U ′)) I1U ′≥U ] .

Remark. The more linear g the smaller Cov(g(U), g(1 − U)); we have Cov(g(U), g(1 −
U)) = −1.

We have Φ that is increasing as Φ−1, X = Φ−1(U) and −X = Φ−1(1−U) are antithetic.
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Example 8. Consider I =
∫ 1

0

1

1 + x
dx = log 2, Î(MC)

N =
1

N

∑N
i=1

1

1 + Ui
and

Î
(Anti)
N =

∑N
i=1

1

1 + Ui
+
∑N

i=1

1

2− Ui
2N

.

Note that the relative gain of the antithetic method is at least 1/2. Indeed the antithetic
approach allows us to consider 2 crude Monte Carlo approximations Î(1)

N and Î(2)
N using only

a N -sample U1, . . . , UN .

Crude MC Antithetic
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Acceleration of the crude MC method thanks to the use of antithetic variables. The
distribution of the error is more concentrated around the value of interest. In particular
the variance is reduced.

4.4 Control variate acceleration

Consider I = E[g(Y )] = E[g(Y ) + `(Y )]−E[`(Y )]. If ` explain a part of g and if E[`(Y )],
it is easier to approximate E[g(Y )] = E[g(Y ) + `(Y )] rather than I.

Definition 16. A control variate `(Y ) is such that µ = E[`(Y )] is known. Then

Î
(Cont)
N =

1

N

N∑
i=1

(g(Yi) + `(Yi))− µ.

Note that if `(Y ) then c`(Y ), c ∈ R, is also a control variate. We can compute the
optimal control variate and the optimal gain:

Proposition. Given `, the optimal control variate is c∗` with

c∗ = −Cov(g(Y ), `(Y ))

Var (`(Y ))
.

Then the relative gain on the variance is 1− Cor(g(Y ), `(Y ))2.
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In practice c∗ is not know. It indicates that g and ` should be negatively correlated so
that E[g(Y ) + `(Y )] is easier than I to approximate.

Example 9. Consider I =
∫ 1

0

1

1 + x
dx = log 2, consider g(y) = 1/(1 +y) and `(y) = 1 +y

so that µ = 3/2. Then
c∗ ≈ 0.4773.

Indeed g is a decreasing function of x and ` is increasing. We also

Î
(Cont)
N =

∑N
i=1

1

1 + Ui
+ c∗

∑N
i=1(1 + Ui)

N
− c∗µ.

The relative gain is usually less than for the antithetic acceleration.

Crude MC Control variate
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Acceleration of the crude MC method thanks to the use of control variates. The dis-
tribution of the error is more concentrated around the value of interest. In particular the
variance is reduced.
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Chapter 5
Importance Sampling

5.1 Importance sampling

Monte Carlo approximations achieve their full generality and flexibility when fY is not
the uniform distribution. Note that given fY there is no need for |Supp(h)| < ∞ and the
SLLN and CLT apply until E[g2(Y )] <∞ for g = h/fY . The variance term of the Monte
Carlo approximation is then equal to

Var (g(Y )) =

∫
h(y)2

fY (y)
dy − I2 ,

On the contrary to its expectation E[g(Y )] = I, the variance depends on the properties of
the function h2/fY thus on fY . The optimal fY is ∝ h so that

Var (g(Y )) = 0.

But sampling fY ∝ h is more complicated than approximating I!
One has to make a compromise between the difficulty of sampling Y (simplicity of

fY ) and the difficulty of approximate I from Y (small variance Var (g(Y )) or small ratio
h2/fY ).

5.2 Importance weights

We consider fY simplistic (uniform or normal) and an intermediate density f (also called
importance sampling density) and

h(y)

fY (y)
= g(y)

f(y)

fY (y)

where now g(y) = h(y)/f(y) so that h2/f is small, meaning that f is large when h2 is large.
The density f puts mass on large values of h2, where it is important to sample for having

a good approximation. We interpret w(y) =
f(y)

fY (y)
so that E[w(Y )] = 1 as importance

weights.

Definition 17. The Importance Sampling approximation of I =
∫
g(y)f(y)dy from the

proposal fY is

Î
(IS)
N =

1

N

N∑
i=1

g(Yi)w(Yi)

29



30 CHAPTER 5. IMPORTANCE SAMPLING

where g = h/f is as small as possible and w(y) = f(y)/fY (y).

The weights put mass where f is large, emphasizes samples Yi that are important,
close to where h2 is large. The density f is an intermediate step for realizing a good
approximation. Given that g = h/f is bounded we have

Var (g(Y )w(Y )) = E[g(Y )2w(Y )2]− I2

= E[g(Y )2(w(Y )2 − 1)] + E[g(Y )2]− I2

≤ sup |g|2Var (w(Y )) + Var (g(Y )).

The variance is always larger than without importance weights and the intermediate func-
tion f should be used as a target density for the proposal fY . Then the next step is to
choose fY as close as possible to f , for instance the gaussian distribution with the same
mean and same variance than f .

Example 10. Consider I =
∫ 10

0 exp(−2|x− 5|)dx. The crude Monte Carlo would be, for
Ui iid U(0, 10)

Î
(MC)
N =

1

N

N∑
i=1

exp(−2|Ui − 5|).

The IS approximation would exploit the fact that h(x) = exp(−2|x − 5|) puts a lot of
importance around 5. We should consider the proposal fσ2 = N (5, σ2) and

Î
(IS)
N =

1

N
gσ2(Yi)wσ2(Yi)

where gσ2(y) =
√

2πσ2 exp(−2|y−5|+(y−5)2/(2σ2)) I1[0,10](y) and wσ2(y) = 10/
√

2πσ2 exp(−(y−
5)2/(2σ2)). The good compromise for finding a small gσ2 depends on the hyperparameter
σ2. The smaller the more concentrated around 5 the sample and the larger away from 5, the
larger the less concentrated around 5 and the smaller around 5. Given a good compromise
gσ2 it is then possible to do the IS approximation from N (5, σ2). Note that the variance of
wσ2 should also be small and thus σ2 not too big.

Crude MC Importance
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Acceleration of the crude MC method thanks to the use of Importance sampling. The
choice of the intermediate distribution is crucial.



Chapter 6
General Importance Sampling

6.1 Motivation

Importance Sampling can be used for approximating integrals of the form

I =

∫
h(x)dx =

∫
g(x)f(x)dx

where the intermediate f is a density known up to a constant. For instance it might be that
the density involves some complicated normalizing constants (Beta, Gamma coefficients...).
The problem is well-posed in the sense that I is unique since given any non-negative
function function f then f/

∫
f is the unique density equals to f up to a constant. The

idea is then to estimate
∫
gf =

∫
g(f/fY )fY thanks to modified weights.

Algorithm 9: General Monte Carlo approximation
Parameters: N the number of iterations, g = h/f where f is a non-negative
function, the proposal fY .

For 1 ≤ i ≤ N Do

1. Sample Yi iid fY ,

2. Compute W (Yi) = f(Yi)/fY (Yi).

Compute weights ŵN (Yi) = W (Yi)/(N
−1
∑N

i=1W (Yi)).

Return Î(IS)
N =

1

N

∑N
i=1 g(Yi)ŵN (Yi).

As an immediate corollary of the SLLN, the approximation Î(IS)
N is consistent.

Proposition. If E[W (Y )] <∞ and E[|g(Y )|W (Y )] <∞ then, as N →∞

1

N

N∑
i=1

W (Yi)→
∫
f,

1

N

N∑
i=1

g(Yi)W (Yi)→
∫
g(y)f(y)dy, a.s.

so that Î(IS)
N → I a.s.

Note that by construction
1

N

N∑
i=1

ŵN (Yi) = 1 .

The analysis of the variance is more complicated. However from the CLT and Slutsky
Lemma we get

31
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Proposition. If E[W (Y )] <∞ and Var (g(Y )W (Y )) <∞ we have as N →∞

1

N

N∑
i=1

W (Yi)→
∫
f, a.s.√

N

Var (g(Y )W (Y ))

( 1

N

N∑
i=1

g(Yi)W (Yi)−
∫
g(y)f(y)dy

)
→ N (0, 1)

in distribution so that |Î(IS)
N − I| = OP(

√
Var (g(Y )W (Y ))/N).

Given that g is small one has to control the variance of the pseudo importance weights
Var (W (Y )).

6.2 Application to Bayesian inference

One observes X1, . . . , Xn ∈ X iid ∼ fθ∗ where θ ∈ Θ for some known set Θ ∈ Rd and
some unknown parameter θ∗, X being the observation space. Statistical inference consists
in estimating θ∗ from an estimator θ̂n based on the observations X1, . . . , Xn:

θ̂n = T (X1, . . . , Xn)

where T is some measurable function from X n 7→ Θ. There exist two different approaches

1. Frequentist approach: we assume θ∗ deterministic and one estimates it thank to the
maximum likelihood principle

θ̂n = arg max
θ∈Θ

n∏
i=1

fθ(Xi) =: arg max
θ∈Θ

Ln(θ) ,

It is the Maximum Likelihood Estimator (MLE).

2. Bayesian approach: we assume θ random ∼ π an a known priori distribution on Θ.
The posterior distribution is given by the Bayes formula

f(θ | X1, . . . , Xn) =
Ln(θ)π(θ)∫

Θ Ln(θ)π(θ)dν(θ)
.

The Bayes estimator is the posterior mean

θ̂Bn = E[θ | X1, . . . , Xn] .

Proposition. Given the prior distribution π the Bayes estimator is minimizing the quadratic
risk among any square integrable estimator

θ̂Bn = arg min
T (X1,...,Xn)∈L2

E[(θ − T (X1, . . . , Xn))2].

Example 11. Let X1, . . . , Xn iid N (θ, 1) with Θ ∈ (0, 1). Then θ̂n = min(max(n−1
∑n

i=1Xi, 0), 1).
Consider π = U(0, 1) then we have

θ̂Bn = E[θ | X1, . . . , Xn]

=

∫
Θ θLn(θ)π(θ)dν(θ)∫
Θ Ln(θ)π(θ)dν(θ)

∝
∫ 1

0
θLn(θ)dθ ∈ (0, 1) .
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Instead of computing the maximizer and then projecting on Θ we incorporate the constraint
into the a priori. In practice we approximate by Importance Sampling

θ̂B(IS)
n =

1

N

N∑
i=1

θiŵN (θi)

where

ŵN (θi) =
Ln(θi)/fY (θi) I1(0,1)(θi)

N−1
∑N

i=1 Ln(θi)/fY (θi)

for fY the proposal (on θ). One can choose fY = π, the non-informative proposal from
the Bayesian approach. One can also take fY = fσ2 = N (θ̂n, σ

2), a proposal concentrated
around the MLE with an hyper-parameter σ2. The obtained approximation is a general
Importance Sampling method and the hyper-parameter σ2 should be tuned using importance
weights.

Note that in this setting h(y) = y and the intermediate function f = Ln; the importance
is given to points θ that are likely given the observations X1, . . . , Xn. As n tends to ∞
then the unknown parameter θ∗ becomes more and more likely. Thus θ̂Bn will be closer
and closer to θ̂n. Asymptotically, the two frequentist and Bayesian approaches are then
equivalent.
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The accuracy with respect to the hyperpameter c = 1/σ2, where σ2 is the variance of
the proposal. For small variance the accuracy is large because of a large variance of g and
for large one the accuracy may be large due to instability of the weights and their large
variance.



34 CHAPTER 6. GENERAL IMPORTANCE SAMPLING



Part IV

Markov Chain and Monte Carlo
methods

35





Chapter 7
Markov chain

7.1 Transition kernel

We consider discrete time process (Xt) for t = 0, 1, . . ..

Definition 18. A Markov chain (Xt) is a sequence of random element of X (= Rd or
{xi})such that

FXn|Xn−1,...,X0
= FXn|Xn−1

.

The Markov chain is homogeneous when FXn|Xn−1
is independent of n ≥ 1.

Definition 19. The kernel of an homogeneous Markov chain is the function K such that
FXn|Xn−1=x(dx) = K(x, dx). We have for any x ∈ X that K(x, ·) is a probability measure
and for any A ∈ B(X ) (Borel set of X ) K(·, A) is a non-negative function on X .

When F(X0,X1) admits a density wrt the measure ν, we recognize

K(x, dy) = fX1|X0=x(y)ν(dy) .

Example 12. Consider the random walk Xn = Xn−1 + Zn where (Zn) is iid fZ . Then it
is a Markov chain with kernel

K(x,A) = P(x+ Z ∈ A) =

∫
A
fZ(y − x)ν(dy).

We denote K(x, dy) = fZ(y − x)ν(dy) called the convolution kernel.

Remark. Consider the finite discrete case X = {xi}1≤i≤k then

Pi,j := K(xi, {xj}) = P(Xn = xj |Xn−1 = xi), 1 ≤ i, j ≤ k

constitutes a k×k matrix P that characterizes the kernel. It is called the transition matrix.

Definition 20. A k × k matrix P is stochastic iff Pi,j≥0 and
∑k

j=1 Pi,j = 1.

Proposition. A transition matrix is a stochastic matrix and given a transition matrix
there exists a Markov chain such as it is its transition matrix.

Example 13. The matrix

P =

1/3 1/3 1/3
1/2 0 1/2
0 1/2 1/2


is a transition matrix.

37
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Definition 21. We compose a kernel K to the right with an integrable mesurable function
f

Kf(x) =

∫
X
f(y)K(x, dy) .

We compose to the left with any measure µ

µK(dy) =

∫
X
K(x, dy)µ(dx).

We compose it with itself recursively

K(n)(x, dy) =

∫
X
K(n−1)(x, dz)K(z, dy) , n ≥ 1 .

Remark. In the finite discrete case X = {xi}1≤i≤k we identify the compositions of the
kernel with usual matrix multiplication on P ; to the right with a vector

(Pf)i =
k∑
j=1

Pi,jfj

for any f ∈ Rd, to the right with a raw vector µ ∈ Rd

(µP )j =
k∑
i=1

µiPi,j

and with itself

(Pn)i,j =

k∑
`=1

(Pn−1)i,`P`,j , n ≥ 1 .

The composition of a kernel has some probabilistic interpretation. We have

Kg(x) =

∫
X
g(y)K(x, dy) =

∫
X
g(y)fX1|X0=x(y)ν(dy) = E[g(X1) | X0 = x] .

Moreover

µK(dy) =

∫
X
K(x, dy)µ(dx) =

∫
X
fX1|X0=x(y)ν(dy)µ(dx) =

∫
P(X1 ∈ dy | X0 = x)µ(dx).

It is the distribution of X1 knowing that X0 is µ-distributed. Note that µ does not have
to be a probability measure but µK is always a probability measure and we denote

µK = Pµ(X1 ∈ ·) , Px(X1 ∈ ·) = Pδ{x}(X1 ∈ ·) = P(X1 ∈ · | X0 = x) .

Finally we have
K(n)(x, dy) = P(Xn ∈ dy | X0 = x) .

We prove this identity for n = 2, the general case n ≥ 2 follows by induction

P(X2 ∈ dy | X0 = x) = P(X2 ∈ dy,X1 ∈ X | X0 = x)

=

∫
P(X2 ∈ dy,X1 = z | X0 = x)ν(dz)
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But, admitting the existence of densities, we have

P(X2 ∈ dy,X1 = z | X0 = x) =
f(X2,X1,X0)(y, z, x)

fX0(x)
ν(dy)

=
f(X2,X1,X0)(y, z, x)/f(X1,X0)(z, x)

fX0(x)/f(X1,X0)(z, x)
ν(dy)

= fX2|(X1,X0)=(z,x)(y)fX1|X0=x(z)ν(dy)

= fX2|X1=z(y)fX1|X0=x(z)ν(dy)

where the last identity comes from the Markov property. Combining these identities we
obtain

P(X2 ∈ dy | X0 = x) =

∫
fX2|X1=z(y)ν(dy)fX1|X0=x(z)ν(dz) =

∫
K(z, dy)K(x, dz)

and one recognizes the composition of the kernel.

Example 14.

1. In the finite discrete setting with transition matrix P we identify K(n) and Pn.

2. In the iid setting, K(x, dy) = FX(dy) and K(n)(x, dy) = FX(dy)fX(x).

3. For the random walk Xn = Xn−1 + Zn where (Zn) is iid fZ we have

K(n)(x,A) = P(Xn ∈ A | X0 = x)

= P(x+ Sn ∈ A | X0 = x)

=

∫
A
fSn(y − x)ν(dy)

where Sn =
∑n

i=1 Zi and

fSn(s) =

∫
· · ·
∫
z1+···+zn=s

fZ(z1) · · · fZ(zn)ν(dz1) · · · ν(dzn)

=

∫
· · ·
∫
z1,...,zn−1

fZ(z1) · · · fZ(zn−1)

fZ(s− z1 − · · · − zn−1)ν(dz1) · · · ν(dzn−1)

=

∫
sn−1

· · ·
∫
s1

fZ(s1)fZ(s2 − s1)ν(ds1) · · · fZ(s− sn−1)ν(dsn−1).

Thus we check the relation K(n)(x, dy) =
∫
X K

(n−1)(x, dz)K(z, dy) and the composi-
tion of the kernel is also a convolution.

Lemma (Chapman-Kolmogorov). Let K be a transition kernel then

K(n)(x, dy) =

∫
K(n−k)(x, dz)K(k)(z, dy), , 1 ≤ k ≤ n .

Proof.

P(Xn ∈ dy | X0 = x) =

∫
P(Xn ∈ dy | Xn−k = z)P(Xn−k ∈ dz | X0 = x)ν(dz) .
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7.2 Stationarity and irreducibility

We denote fν the probability measure fν(dy) = f(y)ν(dy) with density f wrt the reference
measure ν.

Definition 22 (Invariant distribution). The distribution fν is invariant iff fνK = fν.

Then fνK(n) = fν and if fν is a probability measure and X0 ∼ fν then Xt ∼ fν for
all t ≥ 0.

In that case (Xt) is said to be stationary because for any h ≥ 0 the trajectory
(Xt, . . . , Xt+h) has the same distribution than (X0, . . . , Xh).

The distribution of (Xt, . . . , Xt+h) is characterized by fν and K.
More precisely

F(Xt,...,Xt+h)(dxt, . . . , dxt+h) = f(xt)ν(dxt)K(xt, dxt+1) · · ·K(xt+h−1, dxt+h)

that we denote

F(Xt,...,Xt+h) = fνK ⊗ · · · ⊗K.

Definition 23 (Hitting time). For any Borel set A we denote τA the hitting time at A

τA = inf{t ≥ 1 : Xt ∈ A} ,

with the convention inf ∅ = +∞.
A stopping time τ ∈ N∪{∞} is a random element so that {τ = t} ∈ σ(X0, . . . , Xt) for

any t ≥ 1.

Any hitting time is a stopping time. Indeed

{τA = t} = {X1 /∈ A, . . . ,Xt−1 /∈ A,Xt ∈ A} .

Example 15 (Example: coin tossing). Consider the game with two players with two for-
tunes A,B ≥ 1.

At each round t they toss a coin Zt = ±1 so that if −1 then A gives to B one euro.
Let Xt = Xt−1 + Zt be the gain of A starting from X0 = 0.
It is a random walk and a Markov chain.
We have two hitting times τ(−A,−∞) = inf{t ≥ 1 : Xt < −A} and τ(B,∞) = inf{t ≥ 1 :

Xt > B} that stop the game.
The ruin of A is the event {τA < τB} w.p. P(τA < τB).

Proposition. A Markov chain satisfies the strong Markov property

FXτ+1|Xτ ,...,X0
= FXτ+1|Xτ

for any topping time τ .
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Proof. We implicitly work under τ <∞ and we have

P(Xτ+1 ∈ Aτ+1, τ <∞ | Xτ ∈ Aτ , . . . , X0 ∈ A0)

=

∞∑
t=1

P(Xτ+1 ∈ Aτ+1|Xτ ∈ Aτ , . . . , X0 ∈ A0)

=
∞∑
t=1

P(Xt+1 ∈ At+1, τ = t,Xt ∈ At, . . . , X0 ∈ A0)

P(Xτ ∈ Aτ , . . . , X0 ∈ A0)

=

∞∑
t=1

P(Xt+1 ∈ At+1 | τ = t,Xt ∈ At, . . . , X0 ∈ A0)

P(τ = t | Xτ ∈ Aτ , . . . , X0 ∈ A0)

=
∞∑
t=1

P(Xτ+1 ∈ Aτ+1 | τ = t,Xτ ∈ Aτ )P(τ = t | Xτ ∈ Aτ , . . . , X0 ∈ A0)

= P(Xτ+1 ∈ Aτ+1 | Xτ ∈ Aτ )

∞∑
t=1

P(τ = t | Xτ ∈ Aτ , . . . , X0 ∈ A0)

= P(Xτ+1 ∈ Aτ+1 | Xτ ∈ Aτ ).

where we used that {τ = t} ∈ σ(X0, . . . , Xt), the Markov property and the homogeneity.
The desired result follows by dividing by P(τ <∞).

7.3 Accessibility and irreducibility

Definition 24. A Borel set B is accessible from a Borel set A iff PA(τB <∞) = P(τB <
∞ | X0 ∈ A) > 0.

They communicate if A is accessible from B.

Note that {x} is not accessible when Xt is continuous.

Definition 25. A Markov chain is ν-irreducible on the state space X (dicrete or continu-
ous) if any Borel sets A and B of X communicate when ν(A)ν(B) > 0.

Definition 26 (The period, discrete case). The period d(x) of {x} is the greatest common
divisor of τ{x} ≥ 1 a.s. starting from x.

Note that τ{x} from x is called the return time to {x}

Proposition. A discrete finite Markov chain (Xt) is such that d(x) = d is independent of
x ∈ X .

Then d is the period of the Markov chain and it is aperiodic iff d = 1

Proof. It is enough to show that if xi and xj communicate then d(xi) = d(xj). If xj is
accessible from xi it means that there exists ni ≥ 1 such that Pnii,j > 0. Similarly there
exists nj ≥ 1 such that Pnjj,i > 0. Let k be such that P ki,i > 0 such that d(xi) divides k.
Then

P
nj+k+ni
j,j = P

nj
j,i P

k
i,iP

ni
i,j > 0

so that P 2k
i,i > 0 and thus Pnj+2k+ni

j,j . One deduces that d(j) divides both nj + k + nj and
nj + 2k + nj thus it divides the difference k. It also divides the greatest common divisor
of such k which is d(i). But as the roles of i and j are the same we also have that d(i)
divides d(j) and the result follows.
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Example 16.

1. (Xt) iid is irreducible on X = Supp(X) and it is aperiodic,

2. Consider the stochastic matrix

P =

1/3 1/3 1/3
1/2 0 1/2
0 1/2 1/2

 .

Then (Xt) is irreducible on X = {x1, x2, x3}. It is aperiodic and even strongly ape-
riodic on {x1} and {x3}.

3. Consider the stochastic matrix

P =

1/3 1/3 1/3
0 1/2 1/2
0 1/2 1/2

 .

Then (Xt) is reducible to X = {x2, x3}.

4. Consider the stochastic matrix

P =

 0 1 0
1/2 0 1/2
0 1 0

 .

Then (Xt) is irreducible to X = {x1, x2, x3}. Its period is 2.

Example 17 (Example: coin tossing). In the coin tossing game with infinite fortune
A = B = ∞ and p = P(toss = head) ∈ (0, 1) then the gain (Xt) of the player A is an
irreducible Markov chain on Z and its periodicity is 2.

In the continuous case, one has to adapt the notion of aperiodicity since the return
time to any point x is infinite. We define

Definition 27. The Markov chain (Xt) satisfy the minorization condition iff there exist a
probability measure µ, a small set C that is accessible, a time t ≥ 1 and ε > 0 such that

K(t)(x, dy) > εµ(dy) , x ∈ C .

A Markov chain is Harris if it is ν-irreducible and satisfies the minorization condition
with t = 1.

Note that in the discrete finite irreducible case C = {x} is a small set for any x ∈ X and
d(x) is the greatest common divisor of the times t satisfying the minorization condition.

Definition 28. The Markov chain is strongly aperiodic iff it satisfies the minorization
condition with t = 1 and µ(C) > 0.

Note that a finite discrete Markov chain is strongly aperiodic if it has a non null diagonal
element Pi,i > 0 for some i.
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7.4 Atom and regeneration

Definition 29 (Atom). A set A that is accessible from any x ∈ X is an atom iff Px(X1 ∈
dy) = µ is independent of x ∈ A.

1. In the finite discrete case any {x} is an atom if the Markov chain is irreducible,

2. In the continuous case there is no atom.

Proposition (Regeneration). Let A be an atom and τA its associated hitting time. Then

(X0, . . . , XτA) is independent of (XτA+1, . . .).

Proof. Use the strong Markov property so that

F(XτA+h,...,XτA+1)|XτA ,...,X0
= F(XτA+h,...,XτA+1)|XτA

= PXτAK ⊗ · · · ⊗K
= µK ⊗ · · · ⊗K

since XτA ∈ A an atom.

The problem is that the atom notion suits only to the discrete case. In the continuous
case, the solution consists in enlarging the Markov chain with a discrete iid sequence. For
simplicity we consider only the strongly aperiodic case.

Theorem (Nummelin). Assume a Markov chain (Xt) is Harris. Consider the chain
(Xt, δt) with δt iid ∼ Bern(ε) and Xt+1 ∼ K(Xt, ·) if Xt /∈ C, else

Xt+1 ∼

µ if δt = 1
K(Xt, ·)− εµ

1− ε
else.

Then the Markov chain (Xt, δt) admits an atom A = C × {1} and the marginal (Xt) is
unchanged.

Note that (Xt, δt) has a well defined transition kernel since (K(Xt, ·) − εµ)/(1 − ε) is
also a transition kernel (non-negative and summing up to 1).

Proof. It is obvious that when Xt+1 ∼ µ the Markov chain (Xt, δt) regenerates indepen-
dently of its own past. We also have

Px(X1 ∈ dy) = εµ(dy) + (1− ε)K(x, dy)− εµ(dy)

1− ε
= K(x, dy)

Note that the Markov chain (Xt, δt) regenerates and it is also the case of the marginal

(X0, . . . , XτA) is independent of (XτA+1, . . .).

However A is not an atom for (Xt) itself, we call it a pseudo-atom.
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7.5 Recurrence and ergodicity

Let (Xt) be a Harris Markov chain starting at t = 1 from X1 ∼ µ.
Define τA(k) = inf{t ≥ τA(k − 1) + 1 : Xt ∈ A} the successive hitting times to the

atom (τA(0) = 0).

Proposition. The cycles
(XτA(k−1)+1, . . . , XτA(k))k≥1

are iid. Thus (Xt) is stationary, its marginal density f is satisfying fνK = fν.

Proof. We start y showing that the lengths of the cycles RA(k) = τA(k) − τA(k + 1) are
iid. Indeed

P(RA(k) > t) =

∫
Ac
· · ·
∫
Ac
µK ⊗ · · · ⊗K︸ ︷︷ ︸

t

is independent of k and of the other hitting times τA(k). Then given RA(k) = t the
distribution of the k-th cycle is

µK ⊗ · · · ⊗K ,

independent of k and the other cycles.

Note that the cycles have a specific case of (discrete) mixture distribution, where the
mixing distribution variable is their lengths.

Define the number of passage

ηA(N) =

N∑
t=1

δA(Xt) = #{1 ≤ k ≤ N ; τA(k) ≤ N}.

We have

Theorem (Renewal theorem). If (Xt) is a Harris Markov chain such that E[τA(1)] < ∞
then, as N →∞ we have

ηA(N)

N
→ 1

E[τA(1)]
, a.s.

We say that (Xt) is positive recurrent and we notice that E[τA(1)] = Eµ[τA] = E[RA(1)].
We then say that the Markov chain is Harris positive recurrent.

On the opposite, it is negative recurrent if E[τA(1)] =∞ and then ηA(N)/N → 0.

Proof. We have {η(N) = j} = {τA(j) ≤ N < τA(j + 1)} so that

τA(j)

j
≤ N

η(N)
<
τA(j + 1)

j
.

As N goes to ∞ we have that j also goes to ∞ otherwise it contradicts RA(1) <∞ which
in turns contradicts E[RA(1)] < ∞. Thus we conclude by a sandwich argument since the
SLLN applies

τA(j)

j
=

∑j
t=1RA(t)

j
→ E[RA(1)] a.s. , j →∞ .
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Example 18.

1. In the iid case, the chain is positive recurrent as τA = 1.

2. Consider the stochastic matrix

P =

1/3 1/3 1/3
1/2 0 1/2
0 1/2 1/2

 .

Then (Xt) is irreducible, any state {x1}, {x2} and {x3} is an atom.

There exists a raw vector f invariant such that fP = f . Moreover f(xi) = 1/Ex1 [τx1 ] >
0 and the Markov chain is positive recurrent.

2 3 4 5 10 pstat

0.
0

0.
1

0.
2

0.
3

0.
4

The evolution of the distribution of a 3-state irreducible Markov chain. Starting from
a uniform initial distribution, the empirical distribution converges rapidly to the unique
invariant distribution.

We are now ready to state our main result on Markov chain.

Theorem. Assume that (Xt) is a Harris positive recurrent Markov chain starting at x
arbitrary and that g satisfies Eµ[(

∑τA
t=1 g(Xt))

2] < ∞. Then there exists some V (g) > 0
such that

√
N
( 1

N

N∑
t=1

g(Xt)−
∫
g(x)f(x)dν(x)

)
→ N (0, V (g)) , N →∞ ,

where f is the unique invariant density.

Proof. The proof starts by showing the existence of a unique invariant probability measure.
The proof is constructive. Using cycles, we have

1

N

N∑
t=1

g(Xt) =
1

N

ηA(N)∑
k=1

τA(k)∑
t=τA(k−1)+1

g(Xt) =
ηA(N)

N

1

ηA(N)

ηA(N)−1∑
k=0

Sk(g) ,
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where (Sk(g))k≥1 constitutes an iid sequence. Since ηA(N) → ∞ as N → ∞ a.s. and
E[|S1(g)|] <∞ we can apply the SLLN so that a.s. as N →∞

1

ηA(N)

ηA(N)−1∑
k=0

Sk(g) =
S0(g)

ηA(N)
+

1

ηA(N)

ηA(N)−1∑
k=1

Sk(g)→ 0 + E[S1(g)] .

Combining this with the renewal theorem we get

1

N

N∑
t=1

g(Xt)→
Eµ[
∑τA

t=0 g(Xt)]

Eµ[τA]
.

Moreover (Xt)t≥τA+1 is stationary and its distribution is the invariant measure fν. Thus
the limit can only be equal to

E[g(X)] =

∫
g(y)f(y)ν(dy) .

As the limit in the SLLN is unique it means that f is unique and that

Eµ

[ τA∑
t=0

g(Xt)
]

= Eµ[τA]E[g(X)] .

Similarly the CLT applies on (Ck(g))k≥1 iid since E[C1(g)2] < ∞ by assumption and we
get

V (g) =
1

Eµ[τA]2
Eµ

[( τA∑
t=1

g(Xt)
)2]
− E[g(X)]2 .

Note that V (g) is small when g2 is small but it depends also on the value of Eµ[τ2
A].



Chapter 8
Metropolis-Hasting algorithm

8.1 The algorithm

Let I =
∫
g(x)f(x)dx where f is a target density known up to a constant.

We would like to simulate following the target density f but it is more complicated
than approximating h. Typically, if h ≥ 0 we would like to simulate under the distribution
f = h/

∫
h.

The MH algorithm will generate a Markov chain such that fνK = fν where ν is the
measure of reference and the target distribution F is proportional to fν. Note that the
equation fνK = fν is free of a multiplicative factor, i.e. αfνK = αfν for any α > 0.
Thus the normalizing constant does not contribute to the determination of the kernel K.

It returns a sample Xt which is approximatively distributed as f but not iid.
Algorithm 10: The Metropolis-Hasting algorithm
Parameters: g, f and a conditional density fY |X=x.
Initialization: X0 = x ∈ Supp(f) arbitrary
For each step t ≥ 0 Do

• Sample Yt+1 ∼ fY |X=Xt ,

• Choose Xt+1 =

{
Yt+1 w.p. ρ(Xt, Yt+1)

Xt w.p. 1− ρ(Xt, Yt+1)

where the MH acceptance probability is

ρ(x, y) = min
(f(y)fY |X=y(x)

f(x)fY |X=x(y)
, 1
)

Return Î(MH)
N = 1

N

∑N
t=1 g(Xt).

The acceptance probability requires the knowledge of f only up to a constant (if f =
h/
∫
h then f(y)/f(x) = h(y)/h(x) and the knowledge of I =

∫
h is not required!).

Note that fY |X=x = fY is possible. Then we talk about the independence Metropolis
algorithm.

A common choice is fY |X=x(y) = ϕσ2(y− x) where ϕ the density of N (0, σ2), then the
acceptance probability simplifies as

ρ(x, y) = min
(f(y)

f(x)
, 1
)

47
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as for any symmetric proposal satisfying fY |X=x(y) = fY |X=y(x). The proposal is accepted
if it moves to a more important step f(Yt+1) ≥ f(Xt). Otherwise, if the move is less
important, there is still some chance to move but with low probability f(Yt+1)/f(Xt) ≤ 1.

8.2 Detailed balance condition

In order to design the MH algorithm, one has to check that its kernel admits f as an
invariant density. For that, we use the detailed balance condition

Definition 30. A Markov chain satisfies the detailed balance condition wrt f iff

K(x, dy)f(x)ν(dx) = K(y, dx)f(y)ν(dy) .

In some sense the role of x and y must be symmetric. We have

Proposition. A Markov chain satisfying the detailed balance condition admits fν as an
invariant distribution.

Proof. We have

fνK =

∫
K(x, dy)f(x)ν(dx) =

∫
f(x)K(x, dy)ν(dx)

=

∫
f(y)K(y, dx)ν(dy) = f(y)ν(dy)

∫
K(y, dx) = fν .

It remains to show that MH satisfies the detailed balance condition. The difficulty
is to identify the transition Kernel that is a mixture of discrete (δ{Xt}) and continuous
(fY |X=Xt). More precisely

K(MH)(x, dy) = ρ(x, y)fY |X=x(y)ν(dy) + (1− ρ(x, y))δ{x}(dy) .

We first check the symmetry property of the acceptance probability

fY |X=x(y)ρ(x, y)f(x) = min(f(y)fY |X=y(x), f(x)fY |X=x(y)) = ρ(y, x)fY |X=y(x)f(y) .

Moreover, we have

(1− ρ(x, y))δ{x}f(x)(dy)ν(dx) = (1− ρ(y, x))δ{y}(dx)f(y)ν(dy)

since the Dirac measure vanishes iff x 6= y so that the role of x and y are interchangeable
since y = x. Thus we infer that

K(MH)(x, dy)f(x)ν(dx) = ρ(y, x)fY |X=y(x)f(y)ν(dy)ν(dx) + f(y)(1− ρ(y, x))δ{y}(dx)ν(dy)

= K(MH)(y, dx)f(y)ν(dy)

and the desired result follows.
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8.3 Convergence analysis

So far we design the MH algorithm so that f is an invariant distribution. Its uniqueness and
invariance will follow from a minorization condition on the conditional proposal that will
implies the minorization condition on K. Then the Markov chain will be Harris and it will
be Harris positive recurrent because it admits an invariant density (the null recurrent case
is excluded because the invariant measures then do not admit a density). More specifically:

Theorem (MH, continuous case ν Lebesgue). Assume that X = Supp(f) is connected such
that ν(X ) > 0, that m < f <M on X and that there exist c, δ > 0

fY |X=x(y) > c, |x− y| < δ, x, y ∈ X .

Then, if Eµ[(
∑τA

t=1 g(Xt))
2] <∞, we have

|Î(MH)
N − I| = OP(

√
V (g)/N)

where V (g) is small when g2 is small.

Proof. The proof is decomposed into two steps. We will first show that any neigborhood
of any point y ∈ X is accessible from X0 = x ∈ X . Thus it would mean that (Xt) is ν|X -
irreducible where ν|X is the Lebesgue measure restricted to X . By connected we meant
that one can go from x to y in m steps smaller than δ/2. For each steps [xi, xi+1] where
δ/2 < |xi − xi+1| < δ we then have fY |X=xi(xi+1) > ε,

K(MH)(xi, dxi+1) ≥ ρ(xi, xi+1)fY |X=xi(xi+1)ν(dxi+1)

≥ min(f(xi+1)fY |X=xi+1
(xi)/f(xi), fY |X=xi(xi+1))ν(dxi+1)

≥ εm
M
ν(dxi+1)

and thus

K(MH),(m)(x, dy) ≥
∫
· · ·
∫
K(MH)(x, dx1) . . .K(MH)(xm−1, dy)

≥
(
ε
m

M

)m ∫
· · ·
∫
ν(dx1) · · · ν(dxm−1)ν(dy)

≥
(
ε
m

M

)m
ν(B1) · · · ν(Bm)ν(dy)

where B1, . . . , Bm are the sets containing the consecutive steps x1, . . . , xm.
We get that any set C = B(y, δ)∩X is accessible. Moreover the minorization condition

is satisfied with m = 1 as for any y ∈ X we have

K(MH)(x, dy) ≥
(
ε
m

M

)
ν(dy) = εν(dy) , y ∈ C .

Thus it is Harris positive recurrent since it admits an invariant density. The CLT applies
and we obtain the desired result.

Note that f = h is an optimal choice when h ≥ 0, thus g = 1 and Eµ[(
∑τA

t=1 g(Xt))
2] =

Eµ[τ2
A]. Thus the CLT is implied by

Eµ[τ2
A] =

Eµ[τ2
C ]

ε2
=
Eµ[τ2

C ]M2

ε2m2
.
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Visualization of MH samples of gaussian random vectors. Small steps in the proposal
reduce the velocity of the algorithm that spends time to move from an initial guess. Large
steps makes the rejection ratio large thus the algorithm get stuck in few different positions
(number of rejections in digit numbers).
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