Time Series Analysis: TD4.

Olivier Wintenberger: olivier.wintenberger@upmc.fr

Exercise 1. Consider (Z_t) WN (σ^2) and the AR(p) model $(\phi_p \neq 0)$

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + Z_t, \qquad t \in \mathbb{Z}$$

- 1. Discuss the existence of a causal solution $X_t = \sum_{j\geq 0} \psi_j Z_{t-j}$ with $\sum_{j\geq 0} \psi_j^2 < \infty$.
- 2. Denote $\mathbb{X}_t = (X_t, \dots, X_{t-p+1})^\top \in \mathbb{R}^p$ and show that (\mathbb{X}_t) is an homogeneous Markov chain of the form $\mathbb{X}_t = \mathbf{A}\mathbb{X}_{t-1} + \mathbb{Z}_t$, $t \ge 0$. Identify \mathbf{A} and \mathbb{Z}_t .
- 3. Show that $z^p \phi(z^{-1})$ with $\phi(z) = 1 \phi_1 z \cdots \phi_p z^p$ is the characteristic polynomial of **A**.
- 4. Deduce that the largest eigenvalue $\rho(\mathbf{A})$ of \mathbf{A} has modulus smaller than 1 if and only if the roots of ϕ are outside the unit disc.
- 5. Show that

$$\mathbb{X}_t = \sum_{j \ge 0} \mathbf{A}^j \mathbb{Z}_{t-j}, \qquad t \in \mathbb{Z},$$

and that the series is normally convergent in \mathbb{L}^2 .

6. Deduce an algorithm to compute the coefficients ψ_j using the **A** and check that they decrease exponentially fast.

Exercise 2. We have the following theorem

Theorem 1 (Hannan). If (X_t) satisfies an ARMA(p,q) model $\phi(L)X_t = \gamma(L)Z_t$ with $\theta = (\phi_1, \ldots, \phi_p, \gamma_1, \ldots, \gamma_q)^\top \in C$ and (Z_t) $SWN(\sigma^2)$, $\sigma^2 > 0$, then the QMLE is asymptotically normal

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d.} \mathcal{N}_{p+q} \left(0, Var(AR_p, \dots, AR_1, MA_q, \dots, MA_1)^{-1} \right)$$

where (AR_t) and (MA_t) are the stationary AR(p) and AR(q) satisfying

 $\phi(L)AR_t = \eta_t, \qquad \gamma(L)MA_t = \eta_t, \qquad t \in \mathbb{Z},$

with the same SWN(1) (η_t) .

Let us consider the ARMA(1,1) model

$$X_t = \phi X_{t-1} + Z_t + \gamma Z_{t-1},$$

with $\theta = (\phi, \gamma)^{\top}$.

- 1. Determine the causal representation of the time series (AR_t) and (MA_t) under the appropriate condition on θ .
- 2. Compute the matrix of variance-covariance $Var(AR_1, MA_1)$.
- 3. Determine the assumption for inverting the matrix and interpret it.
- 4. Invert the matrix.
- 5. Deduce a consistent estimator of the asymptotic variance by plugging in the QMLE $\hat{\theta}_n$.
- 6. Deduce a confidence region of asymptotic level 1α for the coefficient θ .